Structural analysis of the effectiveness of the forecasts of the Cuban Institute of Meteorology
Main Article Content
Abstract
In Cuba, the predictions issued by the Forecast Center (CenPro) of the Cuban Institute of Meteorology since 1978 are verified. Although this practice continues to this day, the verification process has undergone variations since then, either due to changes in the procedures, modifications in the software used for it, or redistribution of forecast regions and areas. For this reason, the objective of this research is to carry out a structural analysis of the forecast effectiveness series in order to identify which methodologies and/or regionalizations implemented caused an alteration in the behavior of data serie.
Data related to the effectiveness of weather forecasts were extracted from monthly and quarterly verification summaries made between 1980 and 2020. Once the normality of the dataset was verified, it was applied the Bai-Perron test to detect multiple change points in a time series, revealing the existence of two significant breakpoints in the years 1996 and 2002. Thus, the series of the CenPro predictions effectiveness was divided into three homogeneous subperiods: 1980-1995, 1996-2001 and 2002-2020
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
BAI, J. & PERRON, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66 (1): 47-78. DOI:10.2307/2998540.
BAI, J. & PERRON, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18 (1): 1-22. DOI: 10.2307/30035185.
CHOW, G.C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28 (3): 591-605. DOI: 10.2307/1910133.
GUJARATI, D.N. & PORTER, D.C. (2010). Econometría, 5ta ed. Editorial McGraw-Hill. México, 921 p. ISBN: 978-607-15-0294-0.
MOYA, A.S.; ESTRADA, A.; BALLESTER, M. & González, C. (2013). Evaluación de los pronósticos del tiempo a corto plazo. Informe de Resultado Científico, Resultado 3, Proyecto Evaluación de los Pronósticos del Tiempo, Instituto de Meteorología INSMET, La Habana, Cuba, 55 p.
PÉREZ, J. (1995). Tratamiento econométrico del cambio estructural: el método de estimación paramétrica ponderada. Tesis doctoral, Universidad Autónoma de Madrid. España, 317 p. ISBN: 978-84-693-2791-3.
PORTELA, M.A. (2000). Metodología del Sistema Nacional de Evaluación de los Pronósticos del Tiempo. Instituto de Meteorología INSMET. La Habana, Cuba, 20 p.
SÁNCHEZ, P.A. (2008). Cambios estructurales en series de tiempo: Una revisión del estado del arte. Ingenierías, 7 (12): 115-140. ISSN: 1692-3324.
VALDERÁ, N. & SARMIENTOS, M. (2021). Modificaciones de la metodología de verificación de los pronósticos del tiempo en Cuba. Informe de Resultado Científico, Resultado 2, Proyecto Verificación de los Pronósticos del Tiempo en Cuba. Instituto de Meteorología INSMET. La Habana, Cuba, 40 p.
ZEILEIS, A.; KLEIBER, CH.; KRÄMER, W. & HORNIK, K. (2003). Testing and Dating of Structural Changes in Practice. Computational Statistics and Data Analysis, 44 (1-2): 109-123. DOI:10.1016/S0167-9473(03)00030-6.