Structural analysis of the effectiveness of the forecasts of the Cuban Institute of Meteorology

Main Article Content

Nathalí Valderá Figueredo
Eileen González Fraguela

Abstract

In Cuba, the predictions issued by the Forecast Center (CenPro) of the Cuban Institute of Meteorology since 1978 are verified. Although this practice continues to this day, the verification process has undergone variations since then, either due to changes in the procedures, modifications in the software used for it, or redistribution of forecast regions and areas. For this reason, the objective of this research is to carry out a structural analysis of the forecast effectiveness series in order to identify which methodologies and/or regionalizations implemented caused an alteration in the behavior of data serie.


Data related to the effectiveness of weather forecasts were extracted from monthly and quarterly verification summaries made between 1980 and 2020. Once the normality of the dataset was verified, it was applied the Bai-Perron test to detect multiple change points in a time series, revealing the existence of two significant breakpoints in the years 1996 and 2002. Thus, the series of the CenPro predictions effectiveness was divided into three homogeneous subperiods: 1980-1995, 1996-2001 and 2002-2020


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Valderá FigueredoN., & González FraguelaE. (2023). Structural analysis of the effectiveness of the forecasts of the Cuban Institute of Meteorology. Revista Cubana De Meteorología, 29(2). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/759
Section
Original Articles

References

BAI, J. (1997). Estimating multiple breaks one at a time. Econometric Theory, 13 (03): 315-352. DOI: 10.1017/S0266466600005831.
BAI, J. & PERRON, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66 (1): 47-78. DOI:10.2307/2998540.
BAI, J. & PERRON, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18 (1): 1-22. DOI: 10.2307/30035185.
CHOW, G.C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28 (3): 591-605. DOI: 10.2307/1910133.
GUJARATI, D.N. & PORTER, D.C. (2010). Econometría, 5ta ed. Editorial McGraw-Hill. México, 921 p. ISBN: 978-607-15-0294-0.
MOYA, A.S.; ESTRADA, A.; BALLESTER, M. & González, C. (2013). Evaluación de los pronósticos del tiempo a corto plazo. Informe de Resultado Científico, Resultado 3, Proyecto Evaluación de los Pronósticos del Tiempo, Instituto de Meteorología INSMET, La Habana, Cuba, 55 p.
PÉREZ, J. (1995). Tratamiento econométrico del cambio estructural: el método de estimación paramétrica ponderada. Tesis doctoral, Universidad Autónoma de Madrid. España, 317 p. ISBN: 978-84-693-2791-3.
PORTELA, M.A. (2000). Metodología del Sistema Nacional de Evaluación de los Pronósticos del Tiempo. Instituto de Meteorología INSMET. La Habana, Cuba, 20 p.
SÁNCHEZ, P.A. (2008). Cambios estructurales en series de tiempo: Una revisión del estado del arte. Ingenierías, 7 (12): 115-140. ISSN: 1692-3324.
VALDERÁ, N. & SARMIENTOS, M. (2021). Modificaciones de la metodología de verificación de los pronósticos del tiempo en Cuba. Informe de Resultado Científico, Resultado 2, Proyecto Verificación de los Pronósticos del Tiempo en Cuba. Instituto de Meteorología INSMET. La Habana, Cuba, 40 p.
ZEILEIS, A.; KLEIBER, CH.; KRÄMER, W. & HORNIK, K. (2003). Testing and Dating of Structural Changes in Practice. Computational Statistics and Data Analysis, 44 (1-2): 109-123. DOI:10.1016/S0167-9473(03)00030-6.

Most read articles by the same author(s)