Evaluation of the WRF as a tool to determine the performance of a photovoltaic system in clear sky conditions

Main Article Content

Flavia Gutiérrez Muiña
Alina Roig Rassi
Israel Borrajero Montejo
Bárbara Liz Miravet Sánchez

Abstract

In photovoltaic systems the evaluation of the efficiency of the plant during long periods is considered of vital importance in order to optimize their performance and maximize their reliability. The impossibility of acquiring in Cuba instruments to measure the intensity of solar radiation to monitor the performance photovoltaic systems, as well as the limitations for their maintenance and calibration imposes the need to estimate it through the use numerical models. In the present work, an assessment of the WRF model is carried out as an alternative to determine the performance of photovoltaic facilities, based on the estimation of the intensity of solar radiation under clear sky conditions. The solar radiation intensity data measured during the month of March 2014 by a calibrated cell is taken as a reference. 5 samples with different conditions of proximity between the variables were used to obtain fitted dependencies between the intensity of solar radiation in the horizontal plane (EICelda) and accumulated downwelling clear sky shortwave flux at bottom (EIWRFCS). It was obtained that it is possible to use the WRF model as an alternative, taking into account that there is a difference between the hours of sunshine to be analyzed difference ≤ 150 Wh/m2.

Downloads

Download data is not yet available.

Article Details

How to Cite
Gutiérrez MuiñaF., Roig RassiA., Borrajero MontejoI., & Miravet SánchezB. L. (1). Evaluation of the WRF as a tool to determine the performance of a photovoltaic system in clear sky conditions. Revista Cubana De Meteorología, 28(4). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/655
Section
Original Articles

References

Branco, V., Alonso, R., de Almeida, E., & Porrini, C. (2018). Evaluación del pronóstico de irradiación solar diaria en Uruguay utilizando el modelo WRF. Gramado: VII Congresso Brasileiro de Energia Solar.
Cardona, M., & Piliougine, M. (2017). Medida de la irradiancia y temperatura. España: Máster Oficial en Tecnología de los sistemas de Energía Solar Fotovoltaica. Universidad Internacional de Andalucía.
Galán, R., Arce, A., Koch, C., & Lara, P. (2015). Modelo de cuantificación del potencial fotovoltaico de España. España: Colección Innovación y Conocimiento.
Guinand, K. J., & Quintero, S. (2020). Protocolo y procedimiento aplicado a instrumentación piranómetro para medición de radiación solar. Universidad de La Salle, Ingeniería en Automatización. Bogotá: Ciencia Unisalle. Obtenido de https://ciencia.lasalle.edu.co/ing_automatizacion/776
Morradán, J. (2012). Piranómetro fotovoltaico. Pamplona, España: Tesis presentada para optar por el título académico de Ingeniero Técnico Industrial Eléctrico. Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación. Universidad Pública de Navarra.
Sayago, S., Ovando, M., & Willington, E. (2011). Radiación solar horaria: Modelos de estimción a partir de variables meteorológicas básicas. Revista de Avances en Energías Renovables y Medio Ambiente. Argentina, Vol. 15.
Stolik, D. (2019). Energía fotovoltaica para Cuba. La Habana, Cuba: Editorial CUBASOLAR.

Most read articles by the same author(s)