Pronostico numérico a corto plazo de la rapidez del viento para los parques eólicos de Gibara I y II
Contenido principal del artículo
Resumen
El presente trabajo estuvo dirigido a estudiar el pronóstico numérico de rapidez del viento para la zona de emplazamiento de los parques eólicos de Gibara I y II. Esto permitirá posteriormente, en unión de la curva de potencia de los aerogeneradores, pronosticar a corto plazo la potencia eólica de los parques. Para ello fue empleado el modelo numérico del tiempo Weather Research & Forecasting (WFR), el cual ha mostrado buenos resultados en los estudios aplicados a la energía eólica como fuente renovable. En los experimentos realizados se utilizaron 4 dominios con resoluciones de 27, 9, 3, y 1 km. Para inicializar el modelo WRF, se emplearon los datos de análisis cada 6 horas como condiciones de frontera (horarios sinópticos de las 0000, 0600, 1200 y 1800 UTC) del modelo GFS para los meses de enero a julio de 2014. También fue utilizada la información proveniente de los aerogeneradores ubicados en ambos parques y la del mástil de prospección de Los Cocos, ubicado en una zona intermedia entre los dos parques. En el caso de los aerogeneradores se utilizaron los datos del SCADA y en el caso del mástil fueron utilizados los datos de rapidez del viento al nivel de 50 metros de altura sobre la superficie. Los resultados demuestran que los errores de pronósticos de rapidez del viento, dados por los estadígrafos utilizados como el error medio absoluto (MAE), el error cuadrático medio (RMSE) y el sesgo (BIAS), fueron menores para el dominio de 1 km en comparación con los otros dominios.
Descargas
Detalles del artículo
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes de la Licencia CC Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0):
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.
Bajo las condiciones siguientes:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
La revista no se responsabiliza con las opiniones y conceptos emitidos en los trabajos, son de exclusiva responsabilidad de los autores. El Editor, con la asistencia del Comité de Editorial, se reserva el derecho de sugerir o solicitar modificaciones aconsejables o necesarias. Son aceptados para publicar trabajos científico originales, resultados de investigaciones de interés que no hayan sido publicados ni enviados a otra revista para ese mismo fin.
La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.
Citas
IRENA, 2021: Renewable capacity statistics 2021 International Renewable Energy Agency (IRENA), Abu Dhabi. ISBN 978-92-9260-342-7, www.irena.org
Official Journal of the European Commission (2001): “Directiva 2001/77/CE del parlamento europeo y del consejo de 27 de septiembre de 2001 relativa a la promoción de la electricidad generada a partir de fuentes renovables de energía en el mercado interior de la electricidad,”, vol. L 283, Oct. 2001, págs. 33-40.
Lobo, M. G. (2010): Métodos de predicción de la generación agregada de energía eólica. Tesis Doctoral, Departamento de Ingeniería eléctrica, Universidad Carlos III de Madrid. 267 pp. http://gwec.net/wp-content/uploads/vip/GWEC_PRstats2017_EN-03_FINAL.pdf
Bollen M.H., Understanding Power Quality Problems: Voltage Sags and Interruptions, Wiley-IEEE Press, 1999.
Gnativ R.M. y J.V. Milanović, “Qualitative and quantitative analysis of voltage sags in networks with significant penetration of embedded generation,”
Nicksson C. A. de Freitas, M. S. Silva, M.S. Sakamoto (2018): Wind Speed Forecasting: A Review. Int. Journal of Engineering Research and Application, ISSN: 2248-9622, Vol. 8, Issue 1, (Part -1) January 2018, pp.04-09.
CRISTEA C., M. Eremia, L. Toma (2015): Wind power forecasting accuracy assessment for multiple time scales. U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 4, 2015 ISSN 2286-3540
Kalmikov A. (2018): Wind Power Fundamentals. DOI: 10.1016/B978-0-12-809451-8.00002-3. https://www.researchgate.net/publication/317119352.
Erbetta I: (2010): Predicción de la potencia para la operación de parques eólicos. Memoria para optar al título de ingeniero civil electricista. Univ. Chile, Fac. Ciencias Físicas y Matemáticas, Dpto de Ing. Elect. 86 pp.
Chang, W.-Y. (2014): A Literature Review of Wind Forecasting Methods. Journal of Power and Energy Engineering, 2, 161-168. http://dx.doi.org/10.4236/jpee.2014.24023
Giebel G., J. Badger, I. Martí Perez, P. Louka, G. Kallos, A. M. Palomares, C. Lac, G. Descombes (2011)Short-term Forecasting Using Advanced Physical Modelling – The Results of the Anemos Project (2006):: Short-term Forecasting Using Advanced Physical Modelling – The Results of the Anemos Project. Results from mesoscale, microscale and CFD modelling, Anemos_PhysicalModelling_EWEC_Athens_2006.doc, 2006-02-08.
Saroha S., S. K. Aggarwal (2015): A Review and Evaluation of Current Wind Power Prediction Technologies WSEAS TRANSACTIONS on POWER SYSTEMS E-ISSN: 2224-350X, Volume 10, 2015
Aggarwal S.K., Meenu Gupta (2013): Wind Power Forecasting: A Review of Statistical Models International Journal of Energy Science (IJES) Volume 3 Issue 1, February 2013
Madsen H., H. Aalborg Nielsen (2010): The State-of-the-art of Wind Power Forecasting in Europe. IAWIND symposium, Iowa, 2010-04-06 – p. 1
Ma L., Li B., Yang Z. B., Du J. and Wang J. (2014): A new combination prediction model for short-term Wind Farm Output Power based on Meteorological Data Collected by WSN. International Journal of Control and Automation, vol. 7, No. 1, pp171-180, http://dx.doi.org/10.14257/ijca.2014.7.1.14.
López E., C. Valle, H. Allende, E. Gil and H. Madsen (2014): Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies 2018, 11, 526; doi: 10.3390/en11030526.
Al-Yahyai S., Y. Charabi, A. Gastli (2010): Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews 14 (2010) 3192–3198.
Giebel, Richard Brownsword, George Kariniotakis, Michael Denhard, Caroline Craxl (2011): The State-Of-The-Art in Short-Term Prediction of Wind Power. A Literature Overview, 2nd Edition G. Advanced Tools for the Management of Electricity Grids with Large-Scale Wind Generation”. ANEMOS Project, Specific Targeted Research Project Contract N°: 038692.
Cristea C., M. Eremia, L. Toma (2015): Wind power forecasting accuracy assessment for multiple timescales. U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 4, 2015 ISSN 2286-3540.
Billinton R., H. Chen, and R. Ghajar (1996): “Time-series models for reliability evaluation of power systems including wind energy,” Microelectronics and Reliability, vol. 36, no. 9, pp. 1253 -1261, Sept. 1996. SCADA, http://www.uco.es/grupos/eatco/automatica/ihm/descargar/scada.pdf
Roque A., M. Sierra, I. Borrajero y A. Ferrer (2015): Pronóstico de viento a corto plazo en torres de referencia meteorológica para el programa eólico cubano. Revista Cubana de Meteorología, Vol.22, No.2, pp.164-187, 2016, ISSN: 0864-151X.
Sierra M., Ferrer A., Borrajero I. (2014): SistMAE automático de predicción a mesoescala de cuatro ciclos diarios. Proyecto: “SistMAE de Predicción a muy corto plazo basado en el Acoplamiento de Modelos de Alta Resolución y Asimilación de Datos”. Informe Científico – Técnico, Instituto de Meteorología.
Roque A., M. Sierra, I. Borrajero y A. Ferrer (2018): Elaboración de pronóstico energético a corto plazo para parques eólicos. Revista de Ingeniería energética, 2018, vol. 39, n. 2, mayo/agosto, p. 115-122. Centro de Investigación y Pruebas Electro energéticas, Facultad de Ingeniería Eléctrica, Universidad Tecnológica de La Habana, José Antonio Echeverría, Cujae, ISSN 1815-5901 RNPS- 1958.
Soltura R., A. González, R. Novo, G. Leiva, O. Vera, E. Ochoa (2011): Resultados del Programa de Prospección Eólica 2005-2010. Certificación de los datos de viento y optimización de la red. CIER 2011, Palacio de las Convenciones de La Habana.
Mesoscale & Microscale Meteorology Division. 2014. ARW Version 3 Modeling System User’s Guide. Complementary to the ARW Tech Note, 411pp. NCAR: Boulder, Colorado, USA.Web:http://www2.mmm.ucar.edu/wrf/users/docs/userguideV3/ARWUsersGuideV3.pdf
Guerra R. (2015): Desarrollo de las Fuentes Renovables en Cuba. Conferencia Internacional de Energía Renovable, Eficiencia energética y Educación Energética (CIER 2015), Palacio de Las Convenciones de La Habana.
Mitrani I., L. Álvarez, I. Borrajero. Aplicación optimizada del MM5V3 sobre el territorio cubano mediante el uso de una computadora personal. Revista Cubana de Meteorología, 2003.
Mitrani I., C. González, I. Borrajero. El uso de MM5V3 en la predicción de eventos peligrosos sobre el territorio cubano. Memorias del Taller de Meteorología Tropical, TROPICO-2004, La Habana (publicación en soporte técnico), ISBN: 959-7167-02-6., 2004.
A. Pérez, Mitrani I y Díaz O (2014): SistMAE de Predicción Numérica Océano Atmósfera (SPNOA), Informe Científico – Técnico, Instituto de Meteorología.
Emeis, S (2013): Wind Energy Meteorology. Atmospheric Physics for Wind Power Generation. Springer-Verlag Berlin Heidelberg 2013. ISBN 978-3-642-30523-8 (eBook) DOI 10.1007/978-3-642-30523-8
Pasquill, F. (1961): The estimation of the dispersion of wind-borne material. Meteorological Magazine, 90, 33-49.
MEASNET (2009): Power performance measurement procedure, Version 5, December – 2009. http://www.measnet.com/wp-content/uploads/2011/06/power5.pdf
Roque A., M. Carrasco, P. Reyes (2015): Características del perfil vertical del viento en la capa superficial atmosférica sobre Cuba, atendiendo a la estratificación térmica de la atmósfera. Rev. Cienc. Tierra y Esp., 2015 / julio-diciembre / Vol. 16 No. 2, ISSN 1729-3790
Carrasco, M., A. ROQUE, O. MONTARTE, and D. RIVAS (2011): Local Breeze Effects on the Wind Energy Generation in the Northern Coast of Cuba. WIND ENGINEERING, VOLUME 35, NO. 6, 2011.
Martínez B., A. Roque (2015): Disminución de la rapidez del viento en la capa superficial atmosférica. Su influencia en el aprovechamiento eólico. Revista Cubana de Meteorología, Vol. 21, No. 1, ene - jun. pp. 49 - 61, 2015.
Petersen, E.L y Troen, I. (1986): European Wind Atlas. European Wind Energy Association, Conference and Exhibition, Roma, Italy.
IRENA (2021), Renewable capacity statistics 2021 International Renewable Energy Agency (IRENA), Abu Dhabi. www.irena.org/Publications