Statistical software to calculate hurricane return periods

Main Article Content

Pedro Roura-Pérez
Vivian Sistachs-Vega
José Carlos Arenas-Sánchez

Abstract

The greatest natural disasters registered in our country’s history have been associated with tropical cyclones. The great cyclonic activity that has taken place in the past few years has focused the attention the climatology of these events, their variability and their tendency on the long haul. Several hurricanes have caused disasters of great magnitude, due, fundamentally to the number of diseased according to the impact of the storms. According to the revised trajectory of the hurricanes that thrashed the Cuban island and the surrounding seas, the Cuban Republic territory has different sensibilities regarding the degrees of damage. This is the main reason behind the development of the TkHURS software to obtain the return periods and calculate the estimated frequencies.


This procedure is performed through a Poisson Model Fitting of the variable that counts the number of hurricanes that thrashed Cuba on the period 1791-2016, from the Chronology of Tropical Cyclones and General Weather States. We propose a methodology to have a better understanding of how to use the software. With the most representative model to fit the data, we allow to estimate values closer to reality and to better understand the analyzed variable regime. In addition, we offer these services to several institutions to obtain an economical gain.

Downloads

Download data is not yet available.

Article Details

How to Cite
Roura-PérezP., Sistachs-VegaV., & Arenas-SánchezJ. C. (1). Statistical software to calculate hurricane return periods. Revista Cubana De Meteorología, 28(1). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/609
Section
Original Articles

References

Dunn, G., & Miller, B. (1969). Atlantic Hurricanes. Instituto de Meteorología, Academia de Ciencias, Instituto del Libro.
González, J. A. (2012). El lenguaje de programación C#.
Gray, W. M. (1984). Atlantic Seasonal Hurricane Frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation Influences. Monthly Weather Review, 112(9), 1649-1668. https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2
Landsea, C., Franklin, J., & Beven, J. (2014). The revised Atlantic hurricane database (HURDAT2) [Database]. The National Hurricane Center (NHC). http://www.aoml.noaa.gov/hrd/hurdat/newhurdat-format.pdf.
Pérez, R. (2006). Cronología de los Huracanes de Cuba. Probabilidad de afectación por huracanes en cada provincia de Cuba [Informe abreviado]. Instituto de Meteorología, Agencia de Medio Ambiente, Ministerio de Ciencias, Tecnología y Medio Ambiente.
Pérez, R. (2013). Cronología de los Huracanes de Cuba [Informe oficial]. Instituto de Meteorología, Agencia de Medio Ambiente, Ministerio de Ciencias, Tecnología y Medio Ambiente.
Roura, P., Vega, R., Sistachs, V., & Alpízar, M. (2018). Caracterización estadística climatológica de huracanes en Cuba durante el período 1791-2016. Revista Cubana de Meteorología, 24(3), 304-312.
Rubiera, J., González, C., Ballester, M., Llanes, M., Caymares, A., Gimeno, Y., & Mojena, E. (2006). Curso sobre Ciclones Tropicales. Academia.
Thai, T. L., & Lam, H. (2003). .NET Framework Essentials (3rd ed.). O’Reilly Media, Inc. https://www.oreilly.com/library/view/net-framework-essentials/0596005059/

Most read articles by the same author(s)