TrendSoft: Software para el análisis de tendencia y puntos de cambio de variables climatológicas
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes de la Licencia CC Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0):
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.
Bajo las condiciones siguientes:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
La revista no se responsabiliza con las opiniones y conceptos emitidos en los trabajos, son de exclusiva responsabilidad de los autores. El Editor, con la asistencia del Comité de Editorial, se reserva el derecho de sugerir o solicitar modificaciones aconsejables o necesarias. Son aceptados para publicar trabajos científico originales, resultados de investigaciones de interés que no hayan sido publicados ni enviados a otra revista para ese mismo fin.
La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.
Citas
Bautista, F.; Bautista, D.A.; Álvarez, O.; Romero, M. & de la Rosa, D. 2013. Software para identificar las tendencias de cambio climático a nivel local: un estudio de caso en Yucatán, México. Nota técnica. Revista Chapingo Serie Ciencias Forestales y del Ambiente.
Cantor, G. & Diana, C. 2011. Maestría en Ingeniería - Recursos Hidráulicos. Universidad Nacional de Colombia.
Castro, L.M. & Carvajal, Y. 2010. Análisis de tendencia y homogeneidad de series climatológicas. Ingeniería de Recursos Naturales y del Ambiente, núm. 9, enero-diciembre, pp. 15-25. Universidad del Valle. Cali, Colombia.
Castro, D.A. & Carvajal, Y. 2013. Análisis de tendencia en la precipitación pluvial anual y mensual en el departamento del Valle del Cauca. Memorias, 11(20), 9-18.
Escalante, C. & Amores, L. 2014. Análisis de tendencia de las variables hidroclimáticas de la Costa de Chiapas. Revista Mexicana de Ciencias Agrícolas vol.5 no.1 Texcoco ene. /feb.
González, J. A. 2012. El lenguaje de programación C#.
Haktanir, T. & Citakoglu, H. 2014. Trend, Independence, Stationarity, and Homogeneity Tests on Maximum Rainfall Series of Standard Durations Recorded in Turkey. Journal of Hydrologic Engineering. September. DOI: 10.1061/(ASCE)HE.1943-5584.0000973.
Murray, N.; Coury, F.; Lerner, A. & Taborda, C. 2018. Ng-book The Complete Book of Angular 5. Fullstack.io.
Pettitt, A. N. 1979. A Non-Parametric Approach to the Change-Point Problem. University of Technology, Loughborough, Leics., England.
Pohlert, T. 2018. Non-Parametric Trend Tests and Change-Point Detection.
Rieseberg, F. 2017. Introducing Electron. O'Reilly Media, Inc. ISBN: 9781491996041.
Ruíz, O.; Espejel, D.; Ontiveros, R.E.; Enciso, J.M.; Galindo, M.A.; Quesada, M.L.; Grageda, J.; Ramos, R. & Ruíz, J.A. 2016. Tendencia de temperaturas máximas y mínimas mensuales en Aguascalientes, México. Revista Mexicana de Ciencias Agrícolas , núm. 13, enero-febrero, pp. 2535-2549, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Estado de México, México.
Serrano, S.; Zuleta, D.; Moscoso, V.; Jácome, P.; Palacios, E. & Villacís, M. 2012. Análisis estadístico de datos meteorológicos mensuales y diarios para la determinación de variabilidad climática y cambio climático en el Distrito Metropolitano de Quito. La Granja. Vol.16 (2): 23-47. ISSN: 1390-3799.
Sneyers, R. 1990. Technical Note No.143 on the Statistical Analysis of Series of Observations. WMO, no. 415, 189 p. ISBN: 92-63-10415-8.
Sneyers, R. 1992. On the use of statistical analysis for the objective determination of climate change. Meteorol. Zeitschrift, N.F. 1, 247-256.
Suriano, M. & Seoane, R. 2013. No estacionariedad y estimación bivariada: evaluación en los parámetros de diseño.
Vega, R. et al. 1994. Resultados preliminares sobre variabilidad, tendencias y fenomenología de los datos de una estación meteorológica con un largo período observacional (Observatorio de Belén en La Habana Vieja). Informe científico técnico, Departamento de Climatología, Instituto de Meteorología, Ministerio de Ciencia, Tecnología y Medio Ambiente de la República de Cuba, pp. 69.
Wald, A. & Wolfowitz, J. 1944. An exact test for randomness in the non-parametric case based on serial correlation. Columbia University.
World Meteorological Organization, 2019. Guide to Hydrological Practices. Volume II: Management of Water Resources and Application of Hydrological Practices. WMO-No. 168. Sixth edition. ISBN 978-92-63-10168-6.