TrendSoft: Software to analyze turning points and tendencies on climate variables

Main Article Content

Pedro Roura-Pérez
José Carlos Arenas-Sánchez
Vivian Sistachs-Vega
Dalia Díaz-Sistachs

Abstract

Taking into account the evidence of global scale climate change, the analysis of climate variation tendencies, have become a topic of great interest for most countries in the world. The experts on such topics, have pointed out that to evidence the climate change existence is necessary to analyze the climate variable tendencies, considering different time and space scales. It is important for the Meteorology Institute to analyze the tendency of climate variables that is the main razon to develop a software with the goal to determine the existence or not of a tendency and turning point of meteorological variables, using non parametric tests. For the serial correlation test we used Wald-Wolfowitz test, and the Spearman, Kendall-Mann and Pettitt correlation test for the tendency and turning point. The computational tool is a web application named TrendSoft.exe it was developed using Angular 7 for the user frontend portion and ASP.NET Core 2.1 to develop the backend API, it was also used Electron to make a pack this web application into a desktop application. We also describe a methodology to evaluate the sensitivity of the analysis of tendencies on different periods of meteorological variables. Using the by 1.2software, we can observe that, on the meteorological station of Casablanca during 1988 - 2018, the superficial temperature of the air has increased on 1.2°C. On the monthly scale we could not determine the existence of tendency or location of any turning point, meanwhile the annual scale it was determined by the existence of tendency at 2.6% and the location off a turning point at 4.5% on the year 2012.

Downloads

Download data is not yet available.

Article Details

How to Cite
Roura-PérezP., Arenas-SánchezJ. C., Sistachs-VegaV., & Díaz-SistachsD. (2020). TrendSoft: Software to analyze turning points and tendencies on climate variables. Revista Cubana De Meteorología, 26(3). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/517
Section
Original Articles

References

Barbettini, N. 2018. The Little ASP.NET Core book. ISBN: 978-1-387-75615-5.
Bautista, F.; Bautista, D.A.; Álvarez, O.; Romero, M. & de la Rosa, D. 2013. Software para identificar las tendencias de cambio climático a nivel local: un estudio de caso en Yucatán, México. Nota técnica. Revista Chapingo Serie Ciencias Forestales y del Ambiente.
Cantor, G. & Diana, C. 2011. Maestría en Ingeniería - Recursos Hidráulicos. Universidad Nacional de Colombia.
Castro, L.M. & Carvajal, Y. 2010. Análisis de tendencia y homogeneidad de series climatológicas. Ingeniería de Recursos Naturales y del Ambiente, núm. 9, enero-diciembre, pp. 15-25. Universidad del Valle. Cali, Colombia.
Castro, D.A. & Carvajal, Y. 2013. Análisis de tendencia en la precipitación pluvial anual y mensual en el departamento del Valle del Cauca. Memorias, 11(20), 9-18.
Escalante, C. & Amores, L. 2014. Análisis de tendencia de las variables hidroclimáticas de la Costa de Chiapas. Revista Mexicana de Ciencias Agrícolas vol.5 no.1 Texcoco ene. /feb.
González, J. A. 2012. El lenguaje de programación C#.
Haktanir, T. & Citakoglu, H. 2014. Trend, Independence, Stationarity, and Homogeneity Tests on Maximum Rainfall Series of Standard Durations Recorded in Turkey. Journal of Hydrologic Engineering. September. DOI: 10.1061/(ASCE)HE.1943-5584.0000973.
Murray, N.; Coury, F.; Lerner, A. & Taborda, C. 2018. Ng-book The Complete Book of Angular 5. Fullstack.io.
Pettitt, A. N. 1979. A Non-Parametric Approach to the Change-Point Problem. University of Technology, Loughborough, Leics., England.
Pohlert, T. 2018. Non-Parametric Trend Tests and Change-Point Detection.
Rieseberg, F. 2017. Introducing Electron. O'Reilly Media, Inc. ISBN: 9781491996041.
Ruíz, O.; Espejel, D.; Ontiveros, R.E.; Enciso, J.M.; Galindo, M.A.; Quesada, M.L.; Grageda, J.; Ramos, R. & Ruíz, J.A. 2016. Tendencia de temperaturas máximas y mínimas mensuales en Aguascalientes, México. Revista Mexicana de Ciencias Agrícolas , núm. 13, enero-febrero, pp. 2535-2549, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Estado de México, México.
Serrano, S.; Zuleta, D.; Moscoso, V.; Jácome, P.; Palacios, E. & Villacís, M. 2012. Análisis estadístico de datos meteorológicos mensuales y diarios para la determinación de variabilidad climática y cambio climático en el Distrito Metropolitano de Quito. La Granja. Vol.16 (2): 23-47. ISSN: 1390-3799.
Sneyers, R. 1990. Technical Note No.143 on the Statistical Analysis of Series of Observations. WMO, no. 415, 189 p. ISBN: 92-63-10415-8.
Sneyers, R. 1992. On the use of statistical analysis for the objective determination of climate change. Meteorol. Zeitschrift, N.F. 1, 247-256.
Suriano, M. & Seoane, R. 2013. No estacionariedad y estimación bivariada: evaluación en los parámetros de diseño.
Vega, R. et al. 1994. Resultados preliminares sobre variabilidad, tendencias y fenomenología de los datos de una estación meteorológica con un largo período observacional (Observatorio de Belén en La Habana Vieja). Informe científico técnico, Departamento de Climatología, Instituto de Meteorología, Ministerio de Ciencia, Tecnología y Medio Ambiente de la República de Cuba, pp. 69.
Wald, A. & Wolfowitz, J. 1944. An exact test for randomness in the non-parametric case based on serial correlation. Columbia University.
World Meteorological Organization, 2019. Guide to Hydrological Practices. Volume II: Management of Water Resources and Application of Hydrological Practices. WMO-No. 168. Sixth edition. ISBN 978-92-63-10168-6.

Most read articles by the same author(s)