Verification of the formation of supercell storms under the tropical and insular conditions of Cuba

Main Article Content

Anyelis de la Caridad Disotuar Rodés
Alis Varela de la Rosa
Elier Pila Fariñas
Mario Carnesoltas Calvo
Rafael Valdés Alberto

Abstract

Supercell storms represent the most organized form of deep convection that occurs in the atmosphere. In Cuba, their formation is considered unlikely due to the tropical and insular configuration that exists in the geographic area, although the possibility of these occurring in isolation under certain conditions is not ruled out. The objective of the research was to verify the formation of supercell storms under the tropical and island conditions of Cuba. Five case studies were selected considering severe events and patterns that a supercell storm can describe. The synoptic conditions of these days were analyzed, as well as images from the GOES 16 meteorological satellite and observations from the meteorological radar. In addition, data were extracted from the RAP numerical weather forecast model to analyze the two theories regarding shear and its influence on the formation of rotation within supercells. As results, the presence of supercell storms could not be verified under the tropical and island conditions of Cuba, however, the presence of storms with dimensions similar to the supercells formed in mid-latitudes was found.

Downloads

Download data is not yet available.

Article Details

How to Cite
Disotuar RodésA. de la C., Varela de la RosaA., Pila FariñasE., Carnesoltas CalvoM., & Valdés AlbertoR. (2025). Verification of the formation of supercell storms under the tropical and insular conditions of Cuba. Revista Cubana De Meteorología, 31(3). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/970
Section
Original Articles

References

Atlas, D. (1963). Radar analyses of severe storm. Meteorologycal Monograhs. 5 (27): 177 – 214.
Chatterjee, P., and Prakash, P. (1989). A radar study of severe thunderstorms around Delhi, Northern India, during the Monsoon season.Atmospheric Research, 22 (1989) 373-384. Elsevier Science Publishers B. V., Amsterdam.
Carnesoltas, M. (2002). La brisa de mar y tierra. Conceptos fundamentales. Revista Cubana de Meteorología, 9(1). 39–60 pp: ISSN. 0864–151X.
Castro, A., Sánchez, J., Faile, R., y Madrid, J. (1989). Análisis de la estructura de las tormentas del Valle Medio del Ebro. Bol. San. Veg. Plagas, 15: 149-160, 1989. Laboratorio de Física de la Atmósfera. Universidad de León.
Davis-Jones, R. (1984). Streamwise Vorticity: The Origin of Updraft Rotation in Supercell Storms. National Severe Storms Laboratory,pp 2991.
Donaldson, R. J. (1965). Methods for identifying Severe Thunderstorm by radar: a guide and bibliography, bolletin AM5.
Doswell, C., and Burgess, D. (1993). Tornadoes and tornadic storms: A review of the conceptual models. The tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., No 79, Amer. Geophys Union, 161-172.
Fujita, T. (1985). The downburst, microburst and macroburst. University of Chicago. SMRP Research Paper, (210).
Gamboa, F.; W. Vázquez, O. Rodríguez, C. Pérez, R. Aroche, R. Rubirosa, I. Medina y J.C. Antuña(1993). Complejo Radárico Automático para la Información de Lluvia Localizada (CRAILL). [inédito]. Informe científico al INSMET.
Gamboa, F. (2004). Selección de indicadores radáricos como productores de severidad. Tesis en Opción al Título Académico de Máster en Ciencias Meteorológicas. Instituto Superior de Ciencias Aplicadas. Ministerio de Ciencia Tecnología y Medio Ambiente, 55 pp.
Greene, D.R., and Clark, R.A. (1972). Vertycally Integrated Liquid Water – A New Analysis Toll. Mon wea, Rev., 100, 548 – 552.
Markowski, P. M. & Y. P. Richardson (2009). Tornadogenesis. Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 3–10 pp.
Markowski, P., and Richardson, Y. (2010). Mesoescale Meteorology in Midlatitudes. Wiley-Blackwell. ISBN: 978-047-074-2136. 430 pp.
Quirantes, J. (2008). Nociones básicas sobre Supercélulas. INM, Agencia Estatal de Meteorología (AEMet).
Quirantes, J., Martín, R., y Mora, N. (2014). Características básicas de las supercélulas en España. Agencia Estatal de Meteorología (AEMET). NIPO: 281-14-008-X.
Rotunno, R., & Klemp, J. B. (1982). The influence of the shear–induced pressure gradient on thunderstorm motion. Mon. Weather Rev. 110, 136–151 pp.
Rotunno, R., & Klemp, J. B. (1985). On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci. 42, 271–292 pp. Sauvageot, H. (1982). Radarmeteorologie. Teledeteccion active de L' atmosphere. Ed, Eyrolles. Paris, France.
Stull, R. (2015). Practical Meteorology: An Algebra-based Survey of Atmospheric Science. ISBN-13: 978-0-88865-176-1.
Varela, R. (2017). Factores que intervienen en la formación de tornados en la región occidental de Cuba. Tesis en opción al título académico de Master en Ciencias Meteorológicas. La Habana, Cuba.
Weisman, M., & Rotunno, R. (2000). The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 1452–1472 pp.
Wicker, L. & Cantrell, L. (1996). The Role of Vertical Buoyancy Distributions in Miniature Supercells. Prepints, 18th Conference on Severe Local Storms, San Francisco, CA, American Meteorological Society, 225-229.
Zipser E. J., and Lutz, K. R. (1994). The vertical profile of indicator of storm intensity and lightning probability. Mon. Wea. Rev., 122, 1751-1759.

Most read articles by the same author(s)

1 2 > >>