Quality control and reconstruction of daily precipitation gauge-based time series for Cuba from 1961 to 2022.

Main Article Content

Abel Centella-Artola
Cecilia Fonseca-Rivera
Roberto Serrano-Notivoli
Ranses Vázquez-Montenegro
Arnoldo Bezanilla-Morlot
Maibys Sierra-Lorenzo
Dimitris A. Herrera

Abstract

This work describes the development of a daily rain-gauge data set for Cuba from 1961 to 2022, using 2871 stations provided by the National Institute of Hydraulic Resources. An exhaustive quality control of spatial coherence was applied to all observations and a reconstruction process was performed to fill the missing values in the stations time series. The quality control allowed to detect 0.13% of repeated data and about 14% of suspicious values. The estimates used for the time series reconstruction had a prediction accuracy of dry and wet days of 97.4% and 92.5%, respectively, while in the comparive estimation of the amount of precipitation, the values of the KGE index were higher than 0.7 in 86% of the series analyzed. To demonstrate the usefulness of the reconstructed data, a trend analysis of the number of consecutive dry days and the proportion of annual precipitation due to days with rainfall above the 95th percentile extreme indicators was performed. The results obtained suggest that the trend of increasing both indices in the eastern region of Cuba is producing a more extreme rainfall regime in that zone. The station data product generated is unique and critical for the development of various research and applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Centella-ArtolaA., Fonseca-RiveraC., Serrano-NotivoliR., Vázquez-MontenegroR., Bezanilla-MorlotA., Sierra-LorenzoM., & A. HerreraD. (2025). Quality control and reconstruction of daily precipitation gauge-based time series for Cuba from 1961 to 2022. Revista Cubana De Meteorología, 31(1), https://cu-id.com/2377/v31n1e14. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/934
Section
Original Articles

References

Barnett, T., Zwiers F., Hegerl, G., Allen, M., Crowly T., Gillett, N., Hasselmann, K., Jones, P., Santer, B., Schnur, R., Stott, P., Taylor, K., & Tett S. (2005). Detecting and attributing external influences on the climate system: A review of recent advances, J. of Climate., 18(9), 1291 –1314.https://doi.org/10.1175/JCLI3329.1
Burgos, Y., y González, I. (2012). Análisis de indicadores de extremos climáticos en la isla de Cuba. Revista de Climatología, 12.
Centella-Artola, A., Bezanilla-Morlot, A., Serrano-Notivoli, R., Vázquez-Montenegro, R., Sierra-Lorenzo, M., and Chang-Dominguez, D. (2023). A new long term gridded daily precipitation dataset at high-resolution for Cuba (CubaPrec1). Data in Brief, 48, 109294. https://doi.org/10.1016/j.dib.2023.109294
Centella-Artola, A., Serrano-Notivoli, R., Fonseca-Rivera, C., Bezanilla-Morlot, Sierra-Lorenzo, M. (2024). Estimación espacial de la lluvia diaria en una región de Cuba usando modelos lineales generalizados y covariables topográficas. Investigación Operacional, FORTHCOMING 62J12-10-23-01, (disponible en https://rev-inv-ope.pantheonsorbonne.fr/sites/default/files/inline-files/PAPER-62J12-10-23-01_0.pdf)
CITMA (2019). Atlas Nacional de Cuba LX Aniversario. Versión 1.0. La Habana: Instituto de Geografía Tropical, GEOCUBA Investigación y Consultoría, CITMATEL.
CITMA (2020). Tercera Comunicación Nacional a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Sello Editorial AMA, Ministerio de Ciencia, Tecnología y Medio Ambiente, ISBN: 978-959-300-170-0
Davitaya, F. F. y Trusov I. I. (1965). Los recursos climáticos de Cuba. Su utilización en la economía nacional. Ed. ACC-INRH, La Habana; 68 p.
Eischeid, J. K., Pasteris, P. A., Diaz, H. F., Plantico, M. S., and Lott, N. J. (2000). Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J. Appl. Meteor., 39 , 1580–1591. https://doi.org/10.1175/1520-0450(2000)039<1580:CASCND>2.0.CO;2
Gagua, G., Zarembo, S., y Izquierdo, A. (1976). Sobre el nuevo mapa isoyético de Cuba. Voluntad Hidráulica, La Habana, Cuba, 37: 35-41.
GarcíaI. T. G., SardiñasS. B., & GonzálezD. H. (2017). Comportamiento de Indicadores de extremos climáticos en la Isla de la Juventud. Revista Cubana De Meteorología, 23(2), 217-225. http://rcm.insmet.cu/index.php/rcm/article/view/241
González GarcíaI. T., Martínez AlvarezM., Gil ReyesL., Alpizar TirzoM., Alonso DíazY., Bocalandro PalmeroM., & Hernández GonzálezD. (2022). Control de la calidad a series de datos diarios de lluvia en el periodo 1961-2008. Revista Cubana De Meteorología, 28(2). http://rcm.insmet.cu/index.php/rcm/article/view/634.
Izquierdo, A. (1989). Precipitación media anual (1964-1983) [mapa 31]. En Nuevo Atlas Nacional de Cuba (p. VI.3.3). España: Gráficas ALBER.
Kendall, M.G. (1970). Rank Correlation Methods, fourth ed. Griffin, London.
Klein Tank, A. M. G., Zwiers, F. W. and Zhang, X. (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, Climate data and monitoring WCDMP-No. 72, WMO-TD No. 1500, 56 pp.
Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424–425, 264–277. https://doi.org/10.1016/j.jhydrol.2012.01.011
Lecha L. B., L. R. Paz y B. Lapinel. (1994). El clima de Cuba. Editorial ACC, 186 pp.
Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., Hanasaki, N., Wada, Y., Zhang, X., Zheng, C., Alcamo, J., & Oki, T. (2017). Water scarcity assessments in the past, present, and future. Earth's Future, 5(6), 545-559. https://doi.org/10.1002/2016EF000518
Mann, H. B. (1945). Non-parametric tests against trend. Econometrica 13, 245–259.
R Core Team. (2017). R: a language and environment for statistical computing. https://www.r-project.org/
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat.Assoc. 324, 1379–1389.
Serrano-Notivoli, R., Luis, M. de., Saz, M. A., y Beguería, S. (2017a). Spatially-based reconstruction of daily precipitation instrumental data series, Clim. Res., 73(3), 167–186, https://doi.org/10.3354/cr01476.
Serrano-Notivoli, R., Beguería, S., Saz, M. Á., Longares, L. A., & de Luis, M. (2017). SPREAD: a high-resolution daily gridded precipitation dataset for Spain – an extreme events frequency and intensity overview. Earth System Science Data, 9(2), 721–738. https://doi.org/10.5194/essd-9-721-2017
Serrano-Notivoli, R. y Tejedor, E. (2021). From rain to data: A review of the creation of monthly and daily station-based gridded precipitation datasets. WIREs Water, 8 (6) e1555, https://doi.org/10.1002/wat2.1555.
Serrano-Notivoli, R. y Centella- Artola. (2024). Reconstruction of Daily Data – Precipitation. (ReddPrec) paquete R version 2.0.3. https://CRAN.R-project.org/package=reddPrec.
Servicio Hidrológico Nacional. (2006). Nuevos logros en el estudio de la pluviosidad en Cuba: Mapa Isoyético para el período 1961- 2000. Revista Voluntad Hidráulica, Año XLIV, No. 98, p. 2 – 14
Škrk, N., Serrano-Notivoli, R., Čufar, K., Merela, M., Črepinšek, Z., Kajfež Bogataj, L., de Luis, M. (2021). SLOCLIM: a high-resolution daily gridded precipitation and temperature dataset for Slovenia. Earth System Science Data, 13(7): 3577–3592. https://doi.org/10.5194/essd-13-3577-2021.
Trusov, I. I. (1967). Las precipitaciones en la Isla de Cuba. Ed. INRH, La Habana, 64p.
Trusov, I. I., Izquierdo, A. y Díaz, L.R. (1983). Características espaciales y temporales de las precipitaciones atmosféricas en Cuba. Ed. Academia, La Habana; 162 p.
Yilmaz, K. K., Hogue, T. S., Hsu, K., Sorooshian, S., Gupta, H. V., & Wagener, T. (2005). Intercomparison of Rain Gauge, Radar, and Satellite-Based Precipitation Estimates with Emphasis on Hydrologic Forecasting. Journal of Hydrometeorology, 6(4), 497–517. https://doi.org/10.1175/JHM431.1
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B., & Zwiers, F. W. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change, 2(6), 851–870. https://doi.org/10.1002/wcc.147

Most read articles by the same author(s)