Behavior of the Interannual course of thunderstorms in Cuba. Period 2005 - 2019

Main Article Content

Lourdes Álvarez Escudero
Israel Borrajero Montejo

Abstract

Electrical discharges cause great damage to people and the economy. The adaptation measures lead to the analysis of the phenomenon, its spatial distribution and its variability over time, keeping the studies updated. The objective of the present work is to analyze the interannual course of the occurrence of storms in the period where all the stations of the country have complete and unbiased information for the present and past weather state code variables. For the study, records of present and past weather conditions are used for 68 stations in the country in the period 2005-2019, where the information is complete and allows the number of days with storms per year to be calculated. The analysis of the interannual changes in the number of days with storms shows that in 35% of the stations under study there is an indication of the decreasing nature of storm activity. Of the stations under study, only four show a growing trend and 21 are homogeneous. The analyzed series show a decreasing behavior from the year 2015 in almost all the stations under study.

Downloads

Download data is not yet available.

Article Details

How to Cite
Álvarez EscuderoL., & Borrajero MontejoI. (2024). Behavior of the Interannual course of thunderstorms in Cuba. Period 2005 - 2019. Revista Cubana De Meteorología, 30(1), https://cu-id.com/2377/v30n1e08. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/844
Section
Original Articles

References

Álvarez Escudero, L., y Borrajero Montejo, I. (2014). Análisis de la marcha interanual de fenómenos meteorológicos para las tres estaciones que triangulan la provincia de La Habana, Cuba. Ciencias de la Tierra y el Espacio, 15(1),12 - 22
Álvarez Escudero, L., y Borrajero Montejo, I. (2021). Relación entre el crecimiento de tormentas y la temperatura para algunas estaciones con información adecuada para su gestión. Revista Cubana de Meteorología, 27(2). http://rcm.insmet.cu/index.php/rcm/article/view/558
Álvarez Escudero, L., Borrajero Montejo, I., y Bárcenas Castro, M. (2014). Análisis de la calidad de series largas de registros de código de estado del tiempo presente para las estaciones de Cuba. Revista Cubana de Meteorología, 20(1), 3–9. http://rcm.insmet.cu/index.php/rcm/article/view/158
Álvarez Escudero, L., Borrajero Montejo, I., y Bárcenas Castro, M. (2014). Análisis de la marcha interanual de fenómenos determinados por el código de tiempo presente para las estaciones de Cuba. Revista Cubana de Meteorología, 20(2), 56–69. http://rcm.insmet.cu/index.php/rcm/article/view/172
Álvarez Escudero, L., Borrajero Montejo, I., y Peláez Chávez, J. C. (2019). Relación entre el crecimiento de tormentas, la temperatura y los aerosoles para la estación Casablanca. Revista Cubana de Meteorología, 25(3), 404-411. http://rcm.insmet.cu/index.php/rcm/article/view/486
Álvarez Escudero, L., Montejo, I., Morales, R., Ferro, L., Llerena, R., Ramírez, C., Rojas Díaz, Y., y Gil, M. (2012). Estudio de la marcha interanual de la frecuencia de ocurrencia de observaciones con tormenta para el territorio cubano. Revista de Climatología, 12, 1–21. http://www.climatol.eu/reclim/reclim12a.pdf
Boccippio, D. J., Goodman, S. J., y Heckman, S. (2000). Regional Differences in Tropical Lightning Distributions. Journal of Applied Meteorology, 39(12), 2231–2248. https://doi.org/10.1175/1520-0450(2001)040%3C2231:rditld%3E2.0.co;2
Cecil, D. J., Buechler, D. E., y Blakeslee, R. J. (2014). Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmospheric Research, 135-136, 404–414. https://doi.org/10.1016/j.atmosres.2012.06.028
Cecil, D. J., Buechler, D. E., y Blakeslee, R. J. (2015). TRMM LIS Climatology of Thunderstorm Occurrence and Conditional Lightning Flash Rates. Journal of Climate, 28(16), 6536–6547. https://doi.org/10.1175/jcli-d-15-0124.1
Christian, H. J., Blakeslee R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., y Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research, 108(D1). https://doi.org/10.1029/2002jd002347
Collier, A. B., Bürgesser, R. E., y Ávila, E. E. (2013). Suitable regions for assessing long term trends in lightning activity. Journal of Atmospheric and Solar-Terrestrial Physics, 92, 100–104. https://doi.org/10.1016/j.jastp.2012.10.012
De Pablo, F., y Rivas Soriano, L. (2002). Relationship between cloud-to-ground lightning flashes over the Iberian Peninsula and sea surface temperature. Quarterly Journal of the Royal Meteorological Society, 128(579), 173–183. https://doi.org/10.1256/00359000260498842
DeRubertis, D. (2006). Recent Trends in Four Common Stability Indices Derived from U.S. Radiosonde Observations. Journal of Climate, 19(3), 309–323. https://doi.org/10.1175/jcli3626.1
Finney, D. L., Doherty, R. M., Wild, O., Stevenson, D. S., MacKenzie, I. A., y Blyth, A. M. (2018). A projected decrease in lightning under climate change. Nature Climate Change, 8(3), 210–213. https://doi.org/10.1038/s41558-018-0072-6
Lay, E. H., Jacobson, A. R., Holzworth, R. H., Rodger, C. J., y Dowden, R. L. (2007). Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. Journal of Geophysical Research: Atmospheres, 112(D13). https://doi.org/10.1029/2006jd007944
Lolis, C. J. (2007). Climatic features of atmospheric stability in the Mediterranean region (1948–2006): spatial modes, inter-monthly and inter-annual variability. Meteorological Applications, 14(4), 361–379. https://doi.org/10.1002/met.36
Middey, A., y Kaware, P. (2016). Disposition of Lightning Activity Due to Pollution Load during Dissimilar Seasons as Observed from Satellite and Ground-Based Data. Climate, 4(2), 28. https://doi.org/10.3390/cli4020028
Naccarato, K. P., Pinto, O., y Pinto, I. R. C. A. (2003). Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophysical Research Letters, 30(13). https://doi.org/10.1029/2003gl017496
Orville, R. E., Huffines, G. R., Burrows, W. R., Holle, R. L., y Cummins, K. L. (2002). The North American Lightning Detection Network (NALDN)—First Results: 1998–2000. Monthly Weather Review, 130(8), 2098–2109. https://doi.org/10.1175/1520-0493(2002)130%3C2098:tnaldn%3E2.0.co;2
Pal, J., Chaudhuri, S., Chowdhury, A. S., y Bandyopadhyay, T. (2016). Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment. Asia-Pacific Journal of Atmospheric Sciences, 52(3), 251–261. https://doi.org/10.1007/s13143-015-0087-0
Poveda, G., Amador, J., Ambrizzi, T., Bazo, J., Robelo González, E., Rubiera J., y Vicente Serrano, S. M. (2020). Tormentas y huracanes. En Moreno, J. M., Laguna-Defior, C., Barros, V., Calvo Buendía, E., Marengo, J. A. y Oswald, Ú. (Eds.), Adaptación frente a los riesgos del cambio climático en los países iberoamericanos – Informe RIOCCADAPT (351-384). McGraw-Hill
Price, C. (2000). Evidence for a link between global lightning activity and upper tropospheric water vapour. Nature, 406(6793), 290–293. https://doi.org/10.1038/35018543
Price, C., y Asfur, M. (2006). Can Lightning Observations be Used as an Indicator of Upper-Tropospheric Water Vapor Variability? Bulletin of the American Meteorological Society, 87(3), 291–298. https://doi.org/10.1175/bams-87-3-291
Reeve, N., y Toumi, R. (1999). Lightning activity as an indicator of climate change. Quarterly Journal of the Royal Meteorological Society, 125(555), 893–903. https://doi.org/10.1002/qj.49712555507
Sneyers, R. (1990) On the Statistical Analysis of Series of Observations. Technical Note No. 143, WMO No. 415, World Meteorological Organization, Geneva, 192 p. https://library.wmo.int/viewer/30743?medianame=wmo_415_#page=1&viewer=picture&o=bookmarks&n=0&q=
Valentí Pía, M. D.; De la Torre Ramos, L., y Añel Cabanelas, J. A. (2011). Tendencias en la probabilidad de tormentas en el Suroeste de Europa, ACT, 2, 97–104
Villarini, G., y Smith, J. A. (2013). Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1995–2010. Atmospheric Research, 124, 137–148. https://doi.org/10.1016/j.atmosres.2012.12.017
Virts, K. S., Wallace, J. M., Hutchins, M. L., y Holzworth, R. H. (2013). Highlights of a New Ground-Based, Hourly Global Lightning Climatology. Bulletin of the American Meteorological Society, 94(9), 1381–1391. https://doi.org/10.1175/bams-d-12-00082.1
Williams, E. R. (2005). Lightning and climate: A review. Atmospheric Research, 76(1-4), 272–287. https://doi.org/10.1016/j.atmosres.2004.11.014
WMO. 1988. Manual on codes. WMO – No. 306, Volume 1, Sección D, Table 4677
Yuan, T., Remer, L. A., Pickering, K. E., y Yu, H. (2011). Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophysical Research Letters, 38(4), n/a-n/a. https://doi.org/10.1029/2010gl046052
Zhao, P., Zhou, Y., Xiao, H., Liu, J., Gao, J., y Ge, F. (2017). Total Lightning Flash Activity Response to Aerosol over China Area. Atmosphere, 8(2), 26. https://doi.org/10.3390/atmos8020026

Most read articles by the same author(s)