Short term generation forecast for photovoltaic farms connected to the National Power Grid

Main Article Content

Israel Borrajero Montejo
Miguel Hinojosa Fernández
Juan Carlos Peláez Chavéz
Krystine Naranjo Villalón
Alfredo Roque Rodríguez

Abstract

A very short term forecast (15 min) of photovoltaic generation from solar farms connected to the National Power Grid in Cuba is presented. The approach described here is based, on one side, on the Heliosat II method for the estimation of solar radiation from meteorological satellites visible images and on the other, on the Cloud Motion Vectors algorithm, which allows to produce an image extrapolated to a near future time based on two consecutive images already received correlation of 0.835 between predicted and reported values in the farms and a mean square error of 0.51 Mw.

Downloads

Download data is not yet available.

Article Details

How to Cite
Borrajero MontejoI., Hinojosa FernándezM., Peláez ChavézJ. C., Naranjo VillalónK., & Roque RodríguezA. (2023). Short term generation forecast for photovoltaic farms connected to the National Power Grid. Revista Cubana De Meteorología, 29(4), https://cu-id.com/2377/v29n4e09. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/813
Section
Original Articles

References

Lorenz, E., Hurka, J., Karampela, G., Heinemann, D., Beyer, H. G., and Schneider, M. (2007). “Qualified forecast of ensemble power production by spatially dispersed grid-connected PV systems”. http://www.iea-shc.org/data/sites/1/publications/23rd_EU_PVSEC_5AO.8.6_lorenz.pdf
Perez R., Kivalov S., Schlemmer J., Hemker K., Renné D., Hoff T. E., 2010. “Validation of short and medium term operational solar radiation forecasts in the US”, Solar Energy, Volume 84, Issue 12, 2010, Pages 2161-2172,ISSN 0038-092X, https://doi.org/10.1016/j.solener.2010.08.014.
Mathiesen P, Collier C, Kleissl J, 2013. "A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting", Solar Energy,Volume 92, 2013, Pages 47-1, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2013.02.018.
Hao Huang, Jin Xu, Zhenzhou Peng, Shinjae Yoo, Dantong Yu, Dong Huang Hong Qin, 2013. “Cloud Motion Estimation for Short Term Solar Irradiation Prediction”, 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 2013, pp. 696-701, doi: 10.1109/SmartGridComm.2013.6688040.
Tiwari S. ,Sabzehgar R. and Rasouli M., 2019. "Short Term Solar Irradiance Forecast based on Image Processing and Cloud Motion Detection," 2019 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2019, pp. 1-6, doi: 10.1109/TPEC.2019.8662134.
H. Escrig, F.J. Batlles, J. Alonso, F.M. Baena, J.L. Bosch, I.B. Salbidegoitia, J.I. Burgaleta, 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast", Energy, Volume 55, 2013, Pages 853-859, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2013.01.054.
Zaher, A. Y., & Ghanem, A. (2018). Clouds Motion Estimation from Ground-Based Sky Camera and Satellite Images. InTech. doi:10.5772/intechopen.71263
Cano, D., Monget, J. M., Alnursson, M., & Guillard, H. (1986). A method for the determination of the global solar radiation from meteorological satellite. Solar Energy, 37(1), 31–39.
Albarelo, T., Marie-Joseph, I, and Primerose, A 2014. “Optimizing the Heliosat-II Method for Surface Solar Irradiation Estimation with GOES Images”.” Canadian Journal of Remote Sensing.2014. Manuscript ID CJRS-14-0088.
Hammer A., Heinemann D., Lorenz E. and Luckehed B. “Short-Term Forecasting Of Solar Radiation: A Statistical Approach Using Satellite Data”, Solar Energy Vol. 67, Nos. 1–3, pp. 139–150, 1999,
Farneback, G. 2003. “Two-Frame Motion Estimation Based on Polynomial Expansion.” Image Analysis, 2003. pp. 363–70
Lucas, B, and Kanade, T. 1981. “An Iterative Image Registration Technique with an Application to Stereo Vision.”

Most read articles by the same author(s)