Elements that intervene in the origin of weak tornadoes in the central region of Cuba

Main Article Content

Flavia Rodríguez Navarro
Alis Varela de la Rosa
Mario Carnesoltas Calvo
José Carlos Fernández Alvarez

Abstract

The tornadoes are very dangerous phenomenons in local scale, they are classified in supercell tornadoes and non supercell tornadoes. In Cuba, most of the tornadoes are non supercell, becouse they are weak and they have short duration. For to identify the elements that intervene in the origin of the weak tornadoes, two cases of study were selected, they occured the central region of Cuba. The reanalysis data, satellite images, radar observations and Sistema de Pronóstico Inmediato (SisPI) were used for this investigation. SisPI was used to locate the vortexes in the Planetary Border Layer, by means of the absolute vorticity, as well as the thermodynamic origin of those vortexes by means of the solenoidal vector. The results showed that the discontinuity surfaces constitute a primordial element for the development of the vertical vorticity in PBL necessary for the origin of the tornadoes. In addition, the solenoidal vector represents correctly the thermodynamic origin of vortexes in the Planetary Border Layer.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rodríguez Navarro F., Varela de la RosaA., Carnesoltas CalvoM., & Fernández AlvarezJ. C. (2021). Elements that intervene in the origin of weak tornadoes in the central region of Cuba. Revista Cubana De Meteorología, 27(4). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/584
Section
Original Articles

References

Acosta, G. 2008. La Baja fría como un ambiente sinóptico que favorece la ocurrencia de tornados en Cuba. Estudio de condiciones sub-sinópticas a menor escala. Trabajo de Diploma presentado en opción al título de Licenciatura en Meteorología, Ciudad de La Habana, Cuba: Instituto Superior de Tecnologías y Ciencias Aplicadas, 63 p., [Consulted: May 4, 2020].
Alfonso, A. P. 1994. Climatología de las tormentas locales severas de Cuba. Cronología. Cuba: Editorial Academia, 168 p., ISBN: 978-95-902-0060-1, [Consulted: April 7, 2020].
Davies-Jones, R. P. 1984. “Streamwise vorticity. The Origin of Updraft Rotation in Supercell Storms”. Journal of the Atmospheric Science, 41(20): 2991-3006, DOI: 10.1175/15200469(1984)041.
Doswell III, C. A. 1991. “A review for forecasters on the application of hodographs to forecasting severe thunderstorms”. National Weather Digest, 16 (1): 2-16, DOI: 10.1.1.733.391.
Fujita, T. T. 1981. “Tornadoes and downbursts in the context of generalized planetary scales”. Journal of the Atmospheric Science, 38 (8): 1511-1534, DOI: 10.1175/1520-0469(1981)038.
Gamboa, F. 2004. Selección de indicadores radáricos como productores de severidad. Tesis en Opción al Título Académico de Máster en Ciencias Meteorológicas, Ciudad de La Habana, Cuba: Instituto Superior de Ciencias Aplicadas. Ministerio de Ciencia Tecnología y Medio Ambiente, 55 p., [Consulted: July 25, 2020].
Holton, J. R. 2004. An introduction to dynamic meteorology. Dmowska, R.; Holton, J. R. & Rossby, H. T. (eds.), 4th ed., Amsterdam: Elsevier Academic Press, 552 p., ISBN: 9780123540157, Available: , [Consulted: March 19, 2020].
Houze, R. A. 1993. Cloud Dynamics. Dmowska, R. (ed.), 1st ed., Amsterdam: Elsevier Academic Press, 573 p., ISBN: 978-012-356880-9, Available: , [Consulted: September 17, 2020].
Johns, R. H. & Doswell, C. A. III. 1992. “Severe local storms forecasting”. Weather and Forecasting, 7(4):588 - 612, DOI: 10.1175/1520-0434(1992)007
Lee, B. D. & Wilhelmson, R. B. 2000. “The numerical simulation of nonsupercell tornadogenesis. Part III: Parameter Test
Investigating the Role of CAPE, Vortex Sheet Strength, and Boundary Layer Vertical Shear”. Journal of The Atmospheric Science, 57(14): 2246 - 2261, DOI: 10.1175/1520-0469(2000)057.
Miller, S. T. K.; Keim, B. D.; Talbot, R. W. & Mao, H. 2003. “Sea breeze: structure, forecasting, and impacts”. Review of Geophysics, 41(3):1011 - 1020, DOI: 10.1029/2003RG000124.
Monteverdi, J. P.; Doswell III, C. A. &. Lipari, G. S. 2003. “Shear parameter thresholds for forecasting tornadic thunderstorms in northern and central California”. Weather and Forecasting, 18(2): 357- 370, DOI: 10.1175/1520-0434(2003)018.
Quirantes, J. A.; Riesco, J. & Núñez, J. A. 2014. Características básicas de las supercélulas en España. Madrid, España: Ministerio de Agricultura, Alimentación y Medio Ambiente. Agencia Estatal de Meteorología, 57 p., Available:, [Consulted: August 3, 2020].
Rotunno, R. & Klemp, J. B. 1982. “The influence of the shear-induced pressure gradient on thunderstorm motion”. Monthly Weather Review, 110 (2):136 - 151 DOI: 10.1175/1520-0493(1982)110<0136.
Rotunno, R. & Klemp, J. B. 1985. “On the rotation and propagation of simulated supercell thunderstorms”. Journal of the Atmospheric Science. 42(3):271 - 292, DOI: 10.1175/1520-0469(1985)042.
Sierra, M.; Borrajero, I., Ferrer, A.; Morfa, Y.; Morejón, Y. & Hinojosa, M. 2017. Estudios de sensibilidad del SisPI a cambios de la PBL, la cantidad de niveles verticales y las parametrizaciones de microfísica y cúmulos, a muy alta resolución. Informe Científico de resultado, Instituto de Meteorología, La Habana, Cuba, 26 p., DOI: 10.13140/RG.2.2.29136.0005, Available: , [Consulted: August 18, 2020].
Thorpe, A.; Volkert, H. & Zeimianski, M. J. 2003. “The Bjerknes´Circulation theorem”. American Meteorological Society. 84(4): 471 - 477, DOI: 10.1175/BAMS-84-4-471.
Varela, A. 2017. Formación de tornados no asociados a superceldas en la región occidental de Cuba. Tesis en Opción al Título Académico de Máster en Ciencias Meteorológicas, La Habana, Cuba: Instituto Superior de Ciencias Aplicadas, 95 p., [Consulted: March 15, 2020].

Most read articles by the same author(s)