Behavior of lightnings in storms that produce hail fall
Main Article Content
Abstract
In this work, a total of 11 storms in which hail fall was reported and 8 storms in which it was not reported, which occurred in the region of Artemisa, Havana and Mayabeque, during the year 2020, were analyzed. the relationship between lightnings and the fall of hail in storms that produces it. For its development, the hail reports extracted from the monthly summaries prepared by the Forecast Center of the Cuban Institute of Meteorology were used, in addition to the data of lightnings measured by the Earth Networks receiving station located in Casablanca, as well as the observations of the Key West weather radar. The Pearson linear consequence was obtained for the analyzed cases. As a result, it was obtained that, in the hail-producing storms, the lightnings and reflectivity showed a linear impact of 0.86, a value very similar to that of the storms that did not produce hail, which was 0.85. However, the greatest difference was observed in the number of discharges per observed reflectivity, which in the case of hail-producing storms, the reflectivity values between 60 and 69 dBZ were the ones with the highest average discharges per minute, with a value of 10, while in those where hail did not fall, the interval between 50 and 59 dBZ presented a value of 8 average discharges per minute.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Alfonso, A. P. (1986). Aspectos climatológicos de las turbonadas en la Ciudad de la Habana. Ciencias de la Tierra y el Espacio, 12, 85-100.
Álvarez-Escudero, L., Borrajero-Montejo, I., Álvarez-Morales, R., Aenlle-Ferro, L., Bárcenas-Castro, M. (2012). Actualización de la distribución espacial de las tormentas eléctricas en Cuba. Revista Cubana de Meteorología, 18(1), 83-99.
Álvarez-Escudero, L., & Borrajero-Montejo, I. (2018). Distribución espacial de fenómenos meteorológicos en Cuba clasificados a partir del código de tiempo presente. Revista Cubana de Meteorología, 24(1), 111-127.
Baker, B., Baker, M. B., Jayaratne, E. R., Latham, J., & Saunders, C. P. R. (1987). The influence of diffusional growth rates on the charge transfer accompanying rebounding collisions between ice crystals and soft hailstones. Quarterly Journal of the Royal Meteorological Society 113 (478), 1193-1215.
Bermúdez-Souza, Y., Aguilar-Oro, G., & Wallo-Vázquez, A. (2014). Distribución espacial de las tormentas locales severas en Cuba. Revista Cubana de Meteorología, 20(1), 59-72.
Black, R. A., & Hallet, J. (1999). Electrification of the hurricane. Journal of the atmospheric sciences 56(12), 2004-2028.
Bringi, V. N., Knupp, K., Detwiler, A., Liu, L., Caylor, I. J., & Black, R. A. (1997). Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Monthly weather review 125(9), 2131-2160.
Bruning, E. C., Rust, W. D., Schuur, T. J., MacGorman, D. R., Krehbiel, P. R., & Rison, W. (2007). Electrical and polarimetric radar observations of a multicell storm in TELEX. Monthly weather review, 135(7), 2525-2544.
Carey, l. D., & Rutledge, S. A. (1998). Electrical and multiparameter radar observations of a severe hailstorm. Journal of Geophysical Research: Atmospheres, 103(D12), 13979-14000.
Chaviano, J. F. (2017). Estructura interna de las tormentas que generan tiempo severo a partir del modelo WRF-ARW. Tesis en opción al grado de Licenciado en Meteorología. Instituto Superior de Tecnologías y Ciencias Aplicadas, 85p.
Dash, J. G., Mason, B. L., & Wettlaufer, J. S. (2001). Theory of Charge and mass transfer in ice-ice collisions. Journal of Geophysical Research: Atmospheres, 106(D17), 20395-20402.
Dye, J. E., Jones, J. J., Weinheimer, A. J., & Winn, W. P. (1988). Observations within two regions of charge during initial thunderstorm electrification. Quarterly Journal of the Royal Meteorological Society, 114(483), 1271-1290.
Emersic, C., & Saunders, C. P. R. (2010). Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification. Atmospheric Research, 98(2-4), 327-340.
Guili, F. E. N. G., Xiushu, Q. I. E., Tie, Y. U. A. N., & Yunjun, Z. H. O. U. (2006). A case study of cloud-to-ground lightning activities in hailstorms under cold eddy synoptic situation. Journal of Meteorological Research, 20(4), 489-499.
Heinselman, P. L., Emersic, C., MacGorman, D. R., & Bruning, E. C. (2011). Lightning activity in a hail-producing storm observed with phased-array radar. Monthly Weather Review, 139(6), 1809-1825.
Hernández-Capote, J. F., & González-Ramírez, C. M. (2017). Estudio preliminar de la estructura en tormentas que provocaron tiempo severo, mediante las observaciones del radar de Casablanca. Revista Cubana de Meteorología, 23(2), 191-208.
MacGorman, D. R., & Taylor, W. L. (1989). Positive cloud-to-ground lightning detection by a direction-finder network. Journal of Geophysical Research: Atmospheres, 94(D11), 13313-13318.
Martínez, D., D. Pozo, I. Rivero, F. Gamboa, S. Novo, I. Borrajero, A. Bezanilla, C. Pérez, R. Báez Y E. Echavarría (2004): Aplicación de la simulación numérica tridimensional de nubes y el análisis de mesoescala al esclarecimiento de los mecanismos físicos de formación y desarrollo de las nubes y la lluvia en Cuba. Informe final del Proyecto Ramal de Ciencia y Técnica # 49212215. Instituto de Meteorología, CITMA, 112 pp.
Mitzeva, R. P., Saunders, C. P. R., & Tsenova, B. (2005). A modelling studing of the effect of cloud saturation and particle growth rates on charge transfer in thunderstorm electrification. Atmospheric research, 76(1-4), 206-221.
Rust, W. D., MacGorman, D. R., & Arnold, R. T. (1981). Positive cloud-to-ground lightning flashes in severe storms. Geophysical Research Letters, 8(7), 791-794.
Saunders, C. P. R., Bax-Norman, H., Avila, E. E., & Castellano, N. E. (2004). A laboratory study of the influence of ice crystal growth conditions on subsequent charge transfer in thunderstorm electrification. Quarterly Journal of the Royal Meteorological Society, 130(599), 1395-1406.
Saunders, C. P. R., Bax-Norman, Emersic, C., Avila, E. E., & Castellano, N. E. (2006). Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 132(621), 2653-2673.
Schultz, C. J., Petersen, W. A., & Carey, L. D. (2009). Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. Journal of Applied Meteorology and Climatology, 48(12), 2543-2563.
Xu, S., Zheng, D., Wang, Y., & Hu, P. (2016). Characteristics of the two active stages of lightning activity in two hailstorms. Journal of Meteorological Research, 30(2), 265-281.
Yao, W., Ma, Y., & Meng, Q. (2012, April). Characteristics of lightning activities in the hailstorm using the data from two types of lightning detection network. In Proceedings of the 4th International Lightning Meteorology Conference (ILMC 2012).
Yao, W., Zhang, Y., Meng, Q., Wang, F., & Lu, W. (2013). A comparison of the characteristics of total and cloud-to-ground lightning activities in hailstorms. Acta Meteorologica Sinica, 27(2), 282-293.
Ziegler, C. L., McGorman, D. R., Dye, J. E., & Ray, P. S. (1991). A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. Journal of Geophysical Research: Atmospheres, 96(D7), 12833-12855.