Interannual course of thunderstorms occurrence at stations encompassing Mariel Development Zone

Main Article Content

Nayirah Elissalt Ramos
Lourdes Álvarez-Escudero

Abstract

The Mariel Special Development Zone is an area of ​​interest for advancement economic of Cuba; However, like the entire Cuban archipelago, this area it is exposed to electrical storms that act against the port maneuvers and the infrastructure of the place. The objective of this research is to characterize the behavior of the inter-annual march of the occurrence of electrical storms in three meteorological stations that triangulate the Mariel Development Zone. In addition, an inter-annual march analysis is carried out for other meteorological variables associated with the behavior of the thunderstorm trend. The fundamental information base for the study is constituted by the current and past weather code records for the three meteorological stations under analysis, in the period 1989 - 2019. The work concludes that the series of weather code records past and present for the stations that triangulate the Mariel Special Development Zone present different quality, being Casablanca and Bahia Honda excellent and the interannual progress of the percentage of occurrence of observations with storms presents different behaviors, thus that of Bahía Honda is homogeneous, Casablanca it is highly significant increasing and Bauta is highly significant decreasing. The interannual behavior of the occurrence of haze, of temperatures greater or equal than 30 ° C and the average temperatures, do not have a defined relationship and therefore do not explain the behavior of the interannual march of the percent of occurrence of observations with storm for these stations.

Downloads

Download data is not yet available.

Article Details

How to Cite
Elissalt RamosN., & Álvarez-EscuderoL. (2022). Interannual course of thunderstorms occurrence at stations encompassing Mariel Development Zone. Revista Cubana De Meteorología, 28(4). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/649
Section
Original Articles

References

Álvarez, L., Borrajero, I., Álvarez, R. & Rojas Y. (Diciembre 2009). Estudio preliminar del fenómeno niebla a partir del registro de fenómenos y su relación con la variable código de estado del tiempo presente [Artículo]. Memorias del V Congreso Cubano de Meteorología, La Habana, Cuba. Publicación electrónica, ISBN 978-959-7167-20-4, F:\Data\Trabajos completos.pdf, pp. 1456 - 1466.
Álvarez, L., Borrajero, I., Álvarez, R., Aenlle, L., Rivero, I., Iraola, C., Rojas, Y. & Hernández, M. (2012ª). Estudio de la marcha interanual de la frecuencia de ocurrencia de observaciones con tormenta para el territorio cubano. Revista de Climatología, 12, 1-21. http://webs.ono.com/reclim/reclim12a.pdf.
Álvarez, L., Borrajero, I., Álvarez, R., Aenlle, L. & Bárcenas, M. (2012b). Actualización de la distribución espacial de las tormentas eléctricas en Cuba. Revista Cubana de Meteorología, 18(1), 83-99. http://rcm.insmet.cu/index.php/rcm/article/view/49.
Álvarez-Escudero, L. & Borrajero, I. (2014a). Análisis de la marcha interanual de fenómenos meteorológicos para las tres estaciones que triangulan la provincia de La Habana, Cuba. Ciencias de la Tierra y el Espacio, 15(1),12 - 22.
Álvarez-Escudero, L., Borrajero, I. & Barcenas, M. (2014b). Análisis de la calidad de series largas de registros de código de estado del tiempo presente para las estaciones de Cuba. Revista Cubana de Meteorología, 20(1), 3 - 9. http://www.insmet.cu/contenidos/biblioteca/revistas/2014/n1/1.pdf.
Álvarez-Escudero, L., Borrajero, I. & Barcenas, M. (2014c). Análisis de la marcha interanual de fenómenos determinados por el código de tiempo presente para las estaciones de Cuba. Revista Cubana de Meteorología, 20(2), 56 - 69. http://www.insmet.cu/contenidos/biblioteca/revistas/2014/n2/6.pdf.
Álvarez-Escudero, L. & Borrajero, I. (2016). Caracterización de la marcha anual de fenómenos meteorológicos en Cuba, clasificados según el código de tiempo presente. Revista Cubana de Meteorología, 22(1), 3-28. http://www.insmet.cu/contenidos/biblioteca/revistas/2016/n1/01.pdf
Álvarez-Escudero, L., Borrajero-Montejo, I. & Peláez-Chávez, J. C. (2019). Relación entre el crecimiento de tormentas, la temperatura y los aerosoles para la estación Casablanca. Revista Cubana de Meteorología, 25(3), 404-411. http://rcm.insmet.cu/index.php/rcm/article/view/486/756
Álvarez-Escudero, L. & Borrajero-Montejo, I. (2020). Actualización del mapa de niveles ceráunicos de Cuba. Revista Cubana de Meteorología, 26(2). http://rcm.insmet.cu/index.php/rcm/article/view/508/840.
Álvarez-Escudero, L., Borrajero-Montejo, I., García-Santos, Y., Roura-Pérez, P. & Rodríguez-Díaz, Y. (2020). Aporte de la información de tiempo pasado a la contabilidad de tormentas en Cuba. Revista Cubana de Meteorología, 26(3). http://rcm.insmet.cu/index.php/rcm/article/view/525/924, ISSN: 2664-0880.
Álvarez-Escudero, L. & Borrajero-Montejo, I. (2021). Relación entre el crecimiento de tormentas y la temperatura para algunas estaciones con información adecuada para su gestión. Revista Cubana de Meteorología, 27(2). http://rcm.insmet.cu/index.php/rcm/article/view/558/1088, ISSN: 2664-0880
Boccippio, D. J., Goodman, S. J. & Heckman, S. (2000). Regional differences in tropical lightning distributions. J. Appl. Met., 39, 2231-2248. https://doi.org/10.1175/1520-0450(2001)040<2231:RDITLD>2.0.CO;2.
Changnon, S. A. (1988). Climatography of Thunder Events in the Conterminous United States. Part II: Spatial Aspects. Journal of Climate, 1(4), 399-405. DOI: http://dx.doi.org/10.1175/1520-0442(1988)001<0399:COTEIT>2.0.CO;2.
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J, Hall, J. M., Koshak, W. J., Mach, D. M. & Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res, 108(D1), 4005. DOI:10.1029/2002JD0023 47.
Collier, A. B., Bürgesser, R. E. & Ávila, E. E. (2013). Suitable regions for assessing long term trends in lightning activity. J. Atmos. Sol-Terr. Phys., 92, 100-104. DOI: 10.1016/j.jastp.2012.10.012.
Dai, A. (2001a). Global Precipitation and Thunderstorm Frequencies. Part I: Seasonal and Interannual Variations. Journal of Climate, 14(6), 1092-1111. DOI: http://dx.doi.org/10.1175/1520-0442(2001)014<1092:GPATFP>2.0.CO;2.
Dai, A. (2001b). Global Precipitation and Thunderstorm Frequencies. Part II: Diurnal Variations. Journal of Climate, 14(6), 1112-1128. DOI: http://dx.doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.
Declan, L., F., Doherty, R. M., Oliver Wild, O., Stevenson, D. S., MacKenzie, I. A. & Blyth, A. M. (2018). A projected decrease in lightning under climate change. Nature Climate Change Letters. DOI:10.1038/s41558-018-0072-6
De Pablo, F. & Rivas Soriano, L. (2002). Relationship between cloud-to-ground lightning flashes over the Iberian Peninsula and sea surface temperature. Quart. J. Roy. Met. Soc. 128, 173-183. https://doi.org/10.1256/00359000260498842
DeRubertis, D. 2006. Recent Trends in Four Common Stability Indices Derived from U.S. Radiosonde Observations. Journal of Climate, 19, 309-323. https://doi.org/10.1175/JCLI3626.1
García-Santos, Y. & Álvarez-Escudero, L. (2018). Climatología de las tormentas eléctricas determinadas a partir del código de estado de tiempo pasado. Revista Cubana de Meteorología, 24(2), 201-215. http://rcm.insmet.cu/index.php/rcm/article/view/426.
Lay, E. H.; Jacobson, A. R.; Holzworth, R. H.; Rodger, C. J. & Dowden R. L. (2007). Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. J. Geophys. Res. Atmospheres, 112, (D13). https://doi.org/10.1029/2006JD007944.
Lecha, L. B., Paz, L. R. & Lapinel, B. E. (eds.). (1994). El Clima de Cuba. Editorial Academia.
Lolis, C.J. (2007). Climatic features of atmospheric stability in the Mediterranean region (1948-2006): spatial modes, inter-monthly and inter-annual variability. Meteorol. Appl, 14(4), 361-379. https://doi.org/10.1002/met.36
Middey, A. & Kaware, P. B. (2016). Disposition of Lightning Activity Due to Pollution Load during Dissimilar Seasons as Observed from Satellite and Ground-Based Data. Climate, 4(2), 28, https://doi.org/10.3390/cli4020028
Naccarato, K. P., Pinto Jr., P. & Pinto, I. R. C. A. (2003). Evidence of thermal and aerosol effects on the cloud-to- ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys. Res. Lett., 30 (13). https://doi.org/10.1029/2003GL017496
OMM (Organización Meteorológica Mundial). (1956). World distribution thunderstorm days. WMO No. 21, TP 21.
Pal, J., Chaudhuri, S., Chowdhury, A. R. & Bandyopadhyay, T. (2016). Cloud - Aerosol Interaction during Lightning Activity over Land and Ocean: Precipitation Pattern Assessment. Asia-Pac. J. Atmos. Sci., 52(3), 251-261. https://doi.org/10.1007/s13143-015-0087-0
Price, C. (2000). Evidence for a link between global lightning activity and upper tropospheric water vapour. Nature, 406, 290-293. https://doi.org/10.1038/35018543
Price, C. & Asfur, M. (2006). Can Lightning Observations be Used as an Indicator of Upper-Tropospheric Water Vapor Variability?. BAMS, 8(3), 291-298. https://doi.org/10.1175/BAMS-87-3-291.
Reeve, N. & Toumi, R. (1999). Lightning activity as an indicator of climate change. Quart. J. Roy. Met. Soc., 125(555), 893-903. https://doi.org/10.1002/qj.49712555507.
Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. (2014). Projected increase in lightning strikes in the United States due to global warming. Science 643, 851-853. https:/doi.org/10.1126/science.1259100.
Sneyers, R. (1990). On the statistical analysis of series of observations. Technical Note No. 143, WMO-No. 415, World Meteorological Organization, Geneva.
Valentí Pía, M. D., De la Torre, L. & Añel, J. A. (2011). Tendencias en la probabilidad de tormentas en el Suroeste de Europa. ACT, 2, 97- 104. https://ephyslab,uvigo.es/revista-act/ACT_2011_N08_Valenti.pdf
Villarini, G. & Smith, J. A. (2013). Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1909 -2010. Atmos. Res., 124, 137-148. https:doi.org/10.1016/j.atmosres.2012.12.017.
Williams, E.R. (2005). Lightning and climate: A review. Atmospheric Research, 76, 272-287. https://doi.org/10.1016/j.atmosres.2004.11.014
OMM (2011). Manual de Claves. Claves Internacionales. Volumen I.1, Parte A, Claves Alfanuméricas, OMM No. 306, Tabla 4678
Yuan, T., L. Remer, A., Pickering, K. E & Yu H. (2011). Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett., 38(4). https://doi.org/10.1029/2010GL046052.
Zhao, P., Zhou, Y., Xiao, H.; Liu, J., Gao, J. & Ge, F. (2017). Total Lightning Flash Activity Response to Aerosol over China Area. Atmosphere, 8(2), 26. https://doi.org/10.3390/atmos8020026.