Tornado that affected Havana on January 27, 2019

Main Article Content

Mario Carnesoltas-Calvo
Alis Varela-de la Rosa
Maibys Sierra-Lorenzo
Miriam T. Llanes-Monteagudo
Orlando Rodríguez-González
Armando Caymares-Ortiz
Elier Pila-Fariñas
Rafael Valdés-Alberto
Marlin Gutiérrez-Rivera
Luis E. Ramos-Guadalupe

Abstract

On January 27, 2019 an EF4 category tornado, classified according to the improved Fujita Pearson scale, affected Havana city, causing great destruction and the loss of human lives. This article is a synthesis of the report “Intense Tornado that affected the city of Havana on January 27, 2019, Analysis of the causes that generated it” (Carnesoltas, M. et al., 2019).. The sources of information used: maps of the synoptic conditions from that day, satellite images, radar observations and surface measurements from the automatic weather station (AWS) and the conventional Casa Blanca station The instability generated by a deep trough at all levels is described, which generated the formation of an active arc-shaped storm line in front of a cold front (arched echo in the prefrontal line). There are presented the results obtained by the WRF numerical model that reflected the whole process with the CAPE fields, vorticity and reflectivity, among others. One of the significant results is that there was no indication of the anticipated existence of any classic super cell, nor a mini-super cell, but that the characteristics of the tornado resembled in several aspects a vortex of the γ-meso scale within the “Convective Quasi-Linear System ” (which constituted the prefrontal line).

Downloads

Download data is not yet available.

Article Details

How to Cite
Carnesoltas-CalvoM., Varela-de la RosaA., Sierra-LorenzoM., Llanes-MonteagudoM. T., Rodríguez-GonzálezO., Caymares-OrtizA., Pila-FariñasE., Valdés-AlbertoR., Gutiérrez-RiveraM., & Ramos-GuadalupeL. E. (2019). Tornado that affected Havana on January 27, 2019. Revista Cubana De Meteorología, 25(3). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/490
Section
Original Articles

References

Acosta, G. (2008). La Baja fría como un ambiente sinóptico que favorece la ocurrencia de tornados en Cuba. Estudio de condiciones sub-sinópticas a menor escala. Trabajo presentado en opción al título de Licenciado en Meteorología, Instec. 63 p.
Aguilar, G., L. Naranjo, & M. Carnesoltas (2005). Establecimiento de condiciones de la circulación atmosférica a escala sinóptica en los alrededores de Cuba, favorables para la aparición de tormentas locales severas. Informe de Resultado Científico del proyecto “Condiciones sinópticas favorables para la ocurrencia de Tormentas Locales Severas en Cuba. Un esquema para su predicción”. Instituto de Meteorología, Cuba. 35 p.
Alfonso, A. P. (1994). Climatología de las tormentas locales severas de Cuba. Cronología. Editorial Academia, La Habana. 168 p.
Atkins, N. T., & M. St. Laurent (2009). Bow Echo Mesovorticies. Part II: Their genesis. Mon. Wea. Rev., 137, 1487-1532.
Brown, A. & V. T. Wood, (2007). A GUIDE FOR INTERPRETING DOPPLER VELOCITY PATTERNS: Northern Hemisphere. NOAA/National Severe Storms Laboratory, Norman, Oklahoma, Second Edition June 2007, 55 p.
Carbone, R., Foote, B., Moncrieff, M., Gal-Chen, T., Cotton, W., Hjelmfelt, M., Roux, F., Heymsfield, G., and Brandes, E., (1980). Convective dynamics: Panel report. Chapter 24, 391-401.
Carnesoltas, M., A. Varela, M. Sierra, M. T. Llanes, O. Rodríguez, A. Caymares, E. Pila, R. Valdés, M. Gutierrez & L. Ramos, (2019): Tornado que afectó La Habana el 27 de enero de 2019. Informe Científico. Instituto de Meteorología. Depositado en biblioteca. 102 p.
Carnesoltas, M . & M. Gutierrez, (2019): Diagrama de Energía. Revista cubana de Meteorología, vol. 25, No. 4,
Davies-Jones, R. P. (1984). Streamwise Vorticity: The origin of Updraft Rotation in Supercell Storm. J. Atmos. Sci., 41, 20, 2991 - 3006.
Markowski, P. M. & Y. P. Richardson (2009). Tornadogenesis. Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 3-10.
OMM (1992). Vocabulario Meteorológico Internacional. OMM/No.182, Secretaria de la OMM, Segunda Edición, ISBN 92-63-021182-1.
Orlanski, I. (1975). A rational subdivision of scale for atmospheric processes. Bull. Met. Soc., 65, 1, 527 - 530.
Rodríguez, O. (2019). Radares vs Tornado. Centro Met. de Camagüey. 7 p.
Rotunno, R. & J. B. Klemp (1982). The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Weather Rev. 110, 136-151.
Rotunno, R . & J. B. Klemp (1985). On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci. , 42, 271-292.
Stull, R. B (2015). Practical Meteorology. An Algebra-based Survey of Atmospheric Science. 938 p. ISBN 978-0-88865-176-1.
Weisman, M. L., & Klemp, J. B., (1982). The dependence of numerically simulated convective storms on vertical wind and buoyancy. National Center for Atmospheric research, Boulder. CO 80307, 110, 504 - 519.
Weisman, M. L., & R. Rotunno (2000). The use of Vertical Wind Shear versus Helicity in Interpreting Supercell Dynamics. J. Atmos. Sci., 57, 1452 - 1477.
Wicker, L.J., & L. Cantrell (1996). The role of vertical buoyancy distributions in miniature supercells. Preprints, 18th Conf. On Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc.