Impact of tropospheric ozone on potato crop under typical synoptic situations in Cuba

Main Article Content

Rachel Martínez Rodríguez
Arnaldo E. Collazo Aranda
Rosemary López Lee

Abstract

In the research, the influence of tropospheric ozone concentrations on potato crop under types of synoptic situations in San José de las Lajas was evaluated. The ozone concentrations data was obtained from the SILAM Model outputs. The classification of the typical synoptic situations was carried out from the synoptic maps of the Institute of Meteorology. For impact assessment of ozone exposure on potato crop AOT40 index was used. The study covered the period between January 2021 and March 2022. The daily and annual progress of the concentrations of ozone and their behavior under the influence of the typical synoptic situations were obtained. Months with the highest daily average ozone concentrations belonged to the season of lesser rains. The influence of continental migratories anticyclones predominated for the 50% of the total days analyzed. The highest daily ozone average concentrations were assigned to these typical synoptic situations. An increase of the ozone hourly concentrations was observed after frontal zones passed, evidencing transboundary transport of pollutants from US. The obtained correlation between tropospheric ozone concentrations and synoptic situations was from low to moderated level. The estimated potato crop losses for tropospheric ozone exposure were from 14 to 15 ton (4138-3999 USD).

Downloads

Download data is not yet available.

Article Details

How to Cite
Martínez RodríguezR., Collazo ArandaA. E., & López LeeR. (2024). Impact of tropospheric ozone on potato crop under typical synoptic situations in Cuba. Revista Cubana De Meteorología, 30(4), https://cu-id.com/2377/v30n4e04. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/894
Section
Original Articles

References

Calderón, V. A. (2011). Evaluación de riesgos a la salud humana y vegetacional debido a la presencia atmosférica de contaminantes MP10, MP2,5, SO2, NO2, O3 y elementos traza en la cuenca del Aconcagua, Chile. Tesis para optar al grado de Magister en Gestión y Planificación Ambiental. Facultad de Ciencias Forestales y de la Conservación de la Naturaleza. Universidad de Chile. Santiago de Chile, Chile, 140p.
Collazo, A. (2011). Análisis de la contaminación transfronteriza y local de contaminantes gaseosos precursores de la depositación ácida húmeda y formación de ozono en Cuba. Tesis en opción al grado de Magíster en Gestión y Planificación Ambiental, Universidad de Chile, Santiago de Chile, Chile.
Cuesta, O.; González, Y.; Sosa, C.; López, R.; Bolufé, J. & Reyes, R. (2019). La calidad del aire en La Habana. Actualidad. Revista Cubana de Meteorología, Vol. 25, No. 3, ISSN: 2664-0880. DOI: http://revista.insmet.cu/index.php/rcm/article/view/488/0
FMI. (2022). Instituto Meteorológico e Hidrológico de Finlandia. System Integrated for ModeLing of Atmospheric CoMposition (SILAM). DOI: https://silam.fmi.fi
Hollaway, M.; Arnold, S. R.; Challinor, A. J. & Emberson, L. D. (2012). Intercontinental trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere. Biogeosciences, 9, 271–292, 2012. DOI: https: // DOI:10.5194/bg-9-271-2012.
Jolliffe, I. & Stephenson, D. (2003). Forecast Verification. A Practitioner´s Guide in Atmospheric Science. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. ISBN 0-471-49759-2.
Jiménez, L.; Lopez, M. & Gimenez, E. (2021). Worldwide Research on the Ozone Influence in Plants. Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, España. DOI: https://DOI.org/10.3390/agronomy.11081504
Lapinel, B. (1988). La circulación atmosférica y las características espacio-temporales de las lluvias en Cuba. Tesis de doctorado. Inst. Meteorología, La Habana. 147 p. (inédito).
López, R.; Bolufé, J.; Sosa, C.; García E.; Manso, R.; Cuesta, O & Iraola, C. (2018). Evaluación de riesgos para la salud y la vegetación por los contaminantes atmosféricos: SO2, NO2, PM10 y O3 en áreas de Cuba. Resultado P211LH007-019. Programa de Meteorología y Desarrollo Sostenible.
Lou, S.; Liao H.; Yang Y. & Mu, Q. (2015). Simulation of the interannual variations of tropospheric ozone over China: Roles of variations in meteorological parameters and anthropogenic emissions. Atmospheric Environment 122: 839-851.
Martín, A. (2019). Efecto del número de tallos en los índices de crecimiento y el rendimiento de la papa (Solanum tuberosum L.) cultivar Ultra. Trabajo de diploma. Universidad Central “Marta Abreu” de Las Villas.
Mills, G.; Buse, A.; Gimeno, B.; Bermejo, V.; Holland, M.; Emberson, L. & Pleijel, H. (2007). A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment 41 (2007) 2630–2643. DOI: 10.1016/j.atmosenv.2006.11.016
Oficina Nacional de Estadística e Información ONEI, (2021). Anuario estadístico de San José de las Lajas 2021. DOI: https://www.onei.cu.
ONN, (2014). Norma Cubana NC 1020:2014 Calidad del aire - Contaminantes - Concentraciones máximas admisibles y valores guías en zonas habitables. La Habana, Cuba.
OMS, (2021). Directrices globales de calidad del aire de la OMS: material particulado (PM2.5 y PM10), ozono, dióxido de nitrógeno, dióxido de azufre y monóxido de carbono. DOI: https://www.who.int/publications/i/item/9789240034228
Ramírez, J. (1989). Estudio de las variaciones en las concentraciones de ozono troposférico en Cuba y su vinculación con algunos fenómenos meteorológicos. Tesis de Doctorado en Ciencias Geográficas, Universidad de La Habana, La Habana, Cuba, 100 p.
Ramírez, J. (1992). Efectos nocivos que produce el ozono troposférico sobre el cultivo del tabaco. Editorial Academia de Ciencias de Cuba. Instituto de Meteorología, La Habana, Cuba.
Sánchez, E. (2021). Acción por el clima y energías renovables en el marco de la agenda 2030. Revista española de desarrollo y cooperación, Vol. 48, pp7-9. ISSN: 1137-8875. Madrid, España.
Seinfeld, J. H. & Pandis, S. (2006). Wet deposition in At¬mospheric chemistry and physics from air pollution to climate change. Editorial John Wiley & Sons, Inc, Hoboken, New Jersey. Segunda edición, 932-979p.
Sompriti, D.; Shahana, B.; Gufran, B. & Bandarusatya, M. (2022). Impact assessment of surface ozone exposure on crop yields at three tropical stations over India. Indian Institute of Tropical Meteorology (IITM). DOI: https://DOI.org/10.21203/rs.3.rs-1775269/v2.
Suganthy, V.S. & Udayasoorian, C. (2020). Ambient and elevated ozone (O3) impactson potato genotypes (solanum tuberosum.l) over a high altitude western Ghats location in southern india. Department of Agriculture, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India. Plant Archives Vol. 20, Supplement 2, 2020 pp. 1367-1373, ISSN:2581-6063 (online), DOI: http://www.plantarchives.org/SPL%20ISSUE%2020-2/219__1367-1373_.pdf
Torres, E.; Lecha, L.; Sánchez, L. & Verdecia, Y. 2020. Catálogo de los tipos de situaciones sinópticas que influyen sobre Cuba, DOI: 10.13140/RG.2.2.12542.20802
Wayne, D. (1991). Estadísticas no paramétricas y de libre distribución. En, Bioestadística. Base para el análisis de las ciencias de la salud. (pp.503 – 557). México, D.F.: Ed. Simusa.