Future projection of temperature and rainfall regimen in Holguin´s province, Cuba using climate model HadGEM-ES

Main Article Content

Axel Hidalgo Mayo
Graciela Pérez Rivas
Iliana Cruz Torres

Abstract

The climate projection of the temperature and precipitation regimes in the Holguín province for the medium term (2031-2060) and the long term (2061-2090), with respect to the base period 1971-2000 is presented. The outputs of the HadGEM-ES global climate model for the RCP (representative concentration trajectories) RCP4.5 and RCP8.5 climate scenarios were used. At the same time, climatic data from the meteorological stations of Cabo Lucrecia, La Jíquima and Pinares de Mayarí in the period 1971-2005, which are representative of the coastal, inland and mountainous areas of the province respectively were used. The BIAS correction (mean error) was applied using the delta method and interpolation using the inverse distance and bilinear methods; Meanwhile, the values of the HadGEM-ES model were contrasted with observations from meteorological stations using BIAS, RSME (root mean square error) and Taylor Diagram errors as comparison metrics. The BIAS correction based on the delta method allowed us to reduce the biases between the projected and observed annual values in the order of 10-3 for temperature and 0.1 mm for precipitation. The results show that the climate of the Holguín province, referring to the temperature and precipitation regimes, would be becoming warmer and drier at the same time, with a possible redistribution of precipitation within the year.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hidalgo MayoA., Pérez RivasG., & Cruz TorresI. (2024). Future projection of temperature and rainfall regimen in Holguin´s province, Cuba using climate model HadGEM-ES. Revista Cubana De Meteorología, 30(3), https://cu-id.com/2377/v30n3e01. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/888
Section
Original Articles

References

Asamblea Nacional del Poder Popular. 2019. Constitución de la República de Cuba. Gaceta Oficial No. 5 Extraordinaria, pp. 69–116.
Asamblea Nacional del Poder Popular. 2023. Ley 150/2022 Del Sistema de Recursos Naturales y el Medio Ambiente. Gaceta Oficial No. 87 Ordinaria, pp. 2091–2140.
Ávila, A.; Rodrígues, R.; Zuluaga, C. F.; Cerón, W., L.; Oliveira, L.; Benezoli, V.; Ayes, I.; Marengo, J., A.; Wilson, A., B. and Medeiros, F. 2023. “Current and Future Climate Extremes Over Latin America and Caribbean: Assessing Earth System Models from High Resolution Model Intercomparison Project (HighResMIP)”. Earth Systems and Environment, 7: 99–130, DOI: 10.1007/s41748-022-00337-7.
Biasutti, M.; Sobel, A. H.; Camargo, S. J. and Creyts, T. T. 2012. “Projected changes in the physical climate of the Gulf Coast and Caribbean”. Climatic Change, 112(3): 819–845, DOI: 10.1007/s10584-011-0254-y.
Campbell, J. D.; Taylor, M. A.; Stephenson, T. S.; Watson, R. A. and Whyte, F. S. 2011. “Future climate of the Caribbean from a regional climate model”. International Journal of Climatology, 31(12): 1866–1878, DOI: 10.1002/joc.2200.
Cavazos, T.; Luna, R.; Cerezo, R.; Fuentes, R.; Méndez, M.; Pineda, L. F. and Valenzuela, E. 2020. “Climatic trends and regional climate models intercomparison over the CORDEX-CAM (Central America, Caribbean, and Mexico) domain”. International Journal of Climatology, 40(3): 1396–1420, DOI: 10.1002/joc.6276.
Centella, A.; Gutiérrez, T., L.; Limia, M. and Rivero, R. 1999. “Climate change scenarios for impact assessment in Cuba”. Climate Research, 12: 223–230.
Centella, A.; Taylor, M. A.; Bezanilla, A.; Martínez, D.; Campbell, J. D.; Stennett, R. K. and Vichot, A. 2015. “Assessing the effect of domain size over the Caribbean region using the PRECIS regional climate model”. Climate Dynamics, 44: 1901–1918, DOI: 10.1007/s00382-014-2272-8.
CITMA 2017. Enfrentamiento al cambio climático en la República de Cuba (Tarea Vida). La Habana: Ministerio de Ciencia, Tecnología y Medio Ambiente, p. 41.
COLA. 2018. Grid Analysis and Display System (GrADS). [Linux], Virginia, US, The Center for Ocean-Land-Atmosphere Studies, Available: .
Consejo de Ministros. 2023. Decreto 86/2023 “Del enfrentamiento al cambio climático”. Gaceta Oficial No. 87 Ordinaria, pp. 2179–2193.
Horton, N., J. and Kleinman, K. 2015. Using R and RStudio for Data Management, Statistical Analysis, and Graphics. Second Edition ed., Boca Raton, US: Taylor & Francis Group, 253 p., ISBN: 978-1-4822-3737-5.
IPCC 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 996 p., ISBN: 978-0-521-70596-7, Available: , [Consulted: October 12, 2023].
IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, 1535 p., ISBN: 978-1-107-66182-0, Available: , [Consulted: October 12, 2023].
Karmalkar, A. V.; Bradley, R. S. and Diaz, H. F. 2011. “Climate change in Central America and Mexico: regional climate model validation and climate change projections”. Climate Dynamics, 49: 605–629, DOI: 10.1007/s00382-011-1099-9
Karmalkar, A. V.; Taylor, M. A.; Campbell, J.; Stephenson, T.; New, M.; Centella, A.; Benzanilla, A. and Charlery, J. 2013. “A review of observed and projected changes in climate for the islands in the Caribbean”. Atmósfera, 26(2): 283–309.
Kotamarthi, R.; Hayhoe, K.; Mearns, L. O.; Wuebbles, D.; Jacobs, J. and Jurado, J. 2021. Downscaling techniques for high-resolution climate projections : from global change to local impacts. Cambridge, UK and New York, USA: Cambridge University Press, 201 p., ISBN: 978-1-108-47375-0.
Lee, T. and Singh, V. 2019. Statistical Downscaling for Hydrological and Environmental Applications. Boca Raton, US: Taylor & Francis Group, 161 p., ISBN: 978-1-138-62596-9.
Liu, Y.; Lee, S.-K.; Enfield, D. B.; Muhling, B. A.; Lamkin, J. T.; Muller-Karger, F. E. and Roffer, M. A. 2015. “Potential impact of climate change on the Intra-Americas Sea: Part-1. A dynamic downscaling of the CMIP5 model projections”. Journal of Marine Systems, 148: 56–69, DOI: 10.1016/j.jmarsys.2015.01.007.
Maraun, D. and Widmann, M. 2018. Statistical Downscaling and Bias Correction for Climate Research. Cambridge, UK: Cambridge University Press, 341 p., ISBN: 978-1-107-06605-2.
Martínez, M.; Bezanilla, A.; Centella, A. y Vichot, A. 2022. “Proyección de extremos climáticos futuros en Cuba bajo escenarios de geoingeniería”. Revista Cubana de Meteorología, 28(2): 1–13.
McLean, N. M.; Stephenson, T. S.; Taylor, M. A. and Campbell, J. D. 2015. “Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones”. Advances in Meteorology, 2015: 1–18, DOI: 10.1155/2015/425987.
Ministerio de Economía y Planificación 2019. Plan Nacional de Desarrollo Económico y Social hasta el año 2030 (PNDES 2030). La Habana: Ministerio de Economía y Planificación, p. 45.
Mohan, S.; Clarke, R. M. and Chadee, X. T. 2020. “Variations in extreme temperature and precipitation for a Caribbean island: Barbados (1969–2017)”. Theoretical and Applied Climatology, 140(3): 1277–1290, DOI: 10.1007/s00704-020-03157-9.
National Center for Atmospheric Research Staff. 2022. The Climate Data Guide: Regridding Overview. NCAR Climate Data Guide, Climate Data Analysis Tools & Methods, Available: , [Consulted: November 10, 2022].
ONEI 2023. Anuario Estadístico de Holguín 2022. Edición 2023 ed., Holguín, Cuba: Oficina Nacional de Estadística e Información, provincia Holguín, 170 p., Available: , [Consulted: December 16, 2023].
ONU 2015. Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Nueva York: Asamblea General de las Naciones Unidas, p. 40, Available: , [Consulted: February 18, 2019].
PCC 2021. Lineamientos de Política Económica y Social del Partido y la Revolución para el período 2021-2026. La Habana: Comité Central del Partido Comunista de Cuba, 85 p.
Pérez, G. e Hidalgo, A. 2016. “Regionalización climática de la provincia de Holguín”. Revista Cubana de Meteorología, 22(1): 39–48.
Pérez, G. e Hidalgo, A. 2023. “Principales variaciones de los regímenes de temperatura y precipitación en la provincia Holguín. Período 1972-2020”. Revista Cubana de Meteorología, 29(4): 1–6.
Planos, E., O. y Gutiérrez, T., L. (eds.). 2020. Tercera Comunicación Nacional a la Convención Marco de las Naciones Unidas sobre Cambio Climático. La Habana: AMA Sello Editorial, 402 p., ISBN: 978-959-300-170-0.
Planos, E. O.; Rivero, R. y Guevara, V. (eds.). 2013. Impactos del Cambio Climático y Medidas de Adaptación en Cuba. La Habana: Editorial AMA, 430 p., ISBN: 978-959-300-039-0.
R Core Team. 2023. R: A language and environment for statistical computing. [Linux], Vienna, Austria, The R Foundation for Statistical Computing, Available: .
Schulzweida, U. 2022. Climate Data Operator. [Linux], Hamburg, Germany, Max Planck Institute of Meteorology, Available: .
Stennett, R. K.; Jones, J. J. P.; Stephenson, T. S. and Taylor, M. A. 2017. “Future Caribbean temperature and rainfall extremes from statistical downscaling”. International Journal of Climatology, 37(14): 4828–4845, DOI: 10.1002/joc.5126.
Taylor, K. E. 2001. “Summarizing multiple aspects of model performance in a single diagram”. Journal of Geophysical Research: Atmospheres, 106(D7): 7183–7192, ISSN: 0148-0227, DOI: 10.1029/2000JD900719.
Taylor, M. A.; Centella, A.; Charlery, J.; Bezanilla, A.; Campbell, J.; Borrajero, I.; Stephenson, T. and Nurmohamed, R. 2013. “The Precis Caribbean Story: Lessons and Legacies”. Bulletin of the American Meteorological Society, 94(7): 1065–1073, DOI: 10.1175/BAMS-D-11-00235.1.
Torma, C.; Giorgi, F. and Coppola, E. 2015. “Added value of regional climate modeling over areas characterized by complex terrain Precipitation over the Alps”. Journal of Geophysical Research: Atmospheres, 120(9): 3957–3972, DOI: 10.1002/2014JD022781.
Vichot, A.; Martinez, D.; Bezanilla, A.; Centella, A. and Giorgi, F. 2021. “Projected changes in precipitation and temperature regimes and extremes over the Caribbean and Central America using a multiparameter ensemble of RegCM4”. International Journal of Climatology, 41(2): 1328–1350, DOI: 10.1002/joc.6811.
Wickham, H. and Grolemund, G. 2016. R for Data Science. First Edition ed., Sebastopol, CA, USA: O’Reilly Media, Inc, 492 p., ISBN: 978-1-4919-1039-9.
Wilks, D. S. 2019. Statistical methods in the atmospheric sciences. Fourth Edition ed., Oxford, United Kingdom: Elsevier/Academic Press, 818 p., ISBN: 978-0-12-385022.

Most read articles by the same author(s)