Comparison of the wind nowcasting generated by the WRF model and an two LSTM models
Main Article Content
Abstract
Cuba is immersed in the use of wind energy. However, for its development it has required various efforts in different fields, including the improvement of tools that make the wind predictable and, in turn, wind generation, such is the case of very short-term forecasts. For this reason, this paper compares the wind forecast of the Weather Research and Forecasting model (WRF) at 3 km spatial resolution a Long Short-Term Memory (LSTM) model type. The comparison and evaluation of the forecasts of the models is carried out with data from the Gibara I and II wind farms and the Los Cocos wind survey mast, located in Holguín, Cuba, with wind speed measurements every 10 minutes at a height of 50 m. The LSTM were built by first training the observations and then combining the observations with the WRF model forecast. The results of the comparison were carried out for three study cases and indicate that both LSTM models present better results than the WRF model, although the differences do not exceed 1 m/s. However, for the case studies, the WRF model behaves well reproducing the daytime cycle, but with a MAE greater than 4 m/s.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Bouche, D., Flamary, R., d'Alché-Buc, F., Plougonven, R., Clausel, M., Badosa, J., y Drobinski, P. (2022). Wind power predictions from nowcasts to 4-hour forecasts: a learning approach with variable selection. DOI https://doi.org/10.1016/j.renene.2023.05.005.
Carpinone, A., Giorgio, M., Langella, R., y Testa, A. (2015). Markov chain modeling for very-short-term wind power forecasting. Electric power systems research, 122, 152-158. ISSN 0378-7796. DOI https://doi.org/10.1016/j.epsr.2014.12.025.
Council, G. W. E. (2022). Global wind report 2021. Global Wind Energy Council.
Emeis, S. (2013). Atmospheric Physics for Wind Power Generation. ISBN 978-3-319-72859-9. DOI https://doi.org/10.1007/978-3-319-72859-9.
Fuentes, A., Sierra, M., y Roque, A. (2022). LSTM Model for Wind Speed and Power Generation Nowcasting. Environmental Sciences Proceedings, 13(1), 30. ISSN: 2664-0880.
Giebel, G., Draxl, C., Brownsword, R., Kariniotakis, G., y Denhard, M. (2011). The state-of-the-art in short-term prediction of wind power. A literature overview, 2nd Edition G. Advanced Tools for the Management of Electricity Grids with Large-Scale Wind Generation. ANEMOS Project, Specific Targeted Research Project Contract N°: 038692. 2011.
GWEC: Global Wind Energy Council. 2021. Global Wind Report. [Cited: 18, may, 2023]. Available in: https://gwec.net/greenrecovery/.
Hinojosa, M. (2015). Pronóstico de Viento a Muy Corto Plazo Para Parques Eólicos. Bachelor’s Thesis, University of Havana, Habana, Cuba.
Li, Z., Luo, X., Liu, M., Cao, X., Du, S., y Sun, H. (2022). Short-term prediction of the power of a new wind turbine based on IAO-LSTM. Energy Reports, 8, 9025-9037. DOI https://doi.org/10.1016/j.egyr.2022.07.030.
Martínez, B., y Roque, A. (2019). Pronóstico energético a muy corto plazo para el Parque Eólico Gibara I utilizando un modelo autorregresivo. Revista Cubana de Meteorología, 25(2). ISSN: 0864-151X.
Mora, E., Cifuentes, J., y Marulanda, G. (2021). Short-term forecasting of wind energy: A comparison of deep learning frameworks. Energies, 14(23), 7943. DOI https://doi.org/10.3390/en14237943.
Paula, J., Sierra, M., y González, P. (2022). Analysis of SisPI Performance to Represent the North Atlantic Subtropical Anticyclone. Environmental Sciences Proceedings, 19(1), 40. DOI https://doi.org/10.3390/ecas2022-12804.
Pedraza, J. (2018). Renewable energy sources in Cuba: Current situation and development prospects. Focus on Renewable Energy Sources, (August), 49-104. [Cited: 18, may, 2023]. Available in: https://www.researchgate.net/publication/326698092.
Roque, A. 2015. Estudio comparativo de estaciones de prospección eólica, con respecto a la torre de referencia meteorológica de El Ramón, en Holguín. Revista Ecosolar, ISSN: 1028 – 6004, La Habana, Cuba.
Roque, A., Borrajero, I., Hernández, A., y Sierra, M. (2015a). Short-term energy forecast for the Gibara I and Los Canarreos wind farms. Instituto de Meteorología de Cuba, Havana, Cuba. Technical Report. P211LH003 – 004.
Rodríguez, A., Hernández, A., Lorenzo, M., y Montejo, I. (2022). Pronóstico numérico a corto plazo de la rapidez del viento para los parques eólicos de Gibara I y II. Revista Cubana de Meteorología, 28(2). ISSN: 2664-0880.
Roque, A., Sierra, M., Borrajero, I., y Ferrer, A. (2015b). Short-term wind forecast in meteorological reference towers for the Cuban wind program. Instituto de Meteorología de Cuba, Havana, Cuba. Technical Report.
Roque, A. y Yu, W. (2014). Informe Científico Técnico del Proyecto Atlas Eólico de Cuba. Instituto de Meteorología de Cuba, Havana, Cuba. Technical Report.
Rosell, D. (2015, 25-28 May). “Desarrollo de las Fuentes Renovables de Energía” [Conferencia Magistral]. In Proceedings of the Congreso Internacional de Energía Renovable, Ahorro y Educación Energética. Palacio de Las Convenciones, La Habana, Cuba.
Sapronova, A., Meissner, C., y Mana, M. (2016, September). “Short time ahead wind power production forecast. In Journal of Physics: Conference Series”. 749, (1), 012006. IOP Publishing. DOI 10.1088/1742-6596/749/1/012006.
Schicker, I., Papazek, P., Kann, A., y Wang, Y. (2017, April). “Wind speed and wind power short and medium range predictions for complex terrain using artificial neural networks and ensemble calibration”. In EGU General Assembly Conference Abstracts, 11846.
Senkal, S., y Ozgonenel, O. (2013, November). “Performance analysis of artificial and wavelet neural networks for short term wind speed prediction”. In 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), 196-198. IEEE. DOI: 10.1109/ELECO.2013.6713830.
Sierra, M., Borrajero, I., Ferrer, A., Morfá, Y., Morejón, Y., y Hinojosa, M. (2017). Estudios de sensibilidad del SisPI a cambios de la PBL, la cantidad de niveles verticales y, las parametrizaciones de microfísica y cúmulos, a muy alta resolución. Informe de resultado Instituto de Meteorlogía, La Habana, Cuba. DOI:10.13140/RG.2.2.29136.00005. [Cited: 18, may, 2023]. Available in: https://www.researchgate.net/publication/325050959.
Sierra, M., Ferrer, A., Hernández, R., González, G., Cruz, R., Borrajero, I., Rodríguez, C.; Rodríguez, N., y Roque, A. (2015). Sistema Automático de Predicción a Mesoescala de Cuatro Ciclos Diarios. Informe de resultado Instituto de Meteorología, La Habana, Cuba. DOI: 10.13140/RG.2.1.2888.1127. [Cited: 18, may, 2023]. Available in: https://www.Researchgate.net/publication/281555728.
Soler, E., Lecha, L., Sánchez, L., y Naranjo, Y. (2020). Catálogo de los tipos de situaciones sinópticas que influyen sobre Cuba. Nueva Gerona, Isla de la Juventud: Centro Meteorológico de la Isla de la Juventud, INSMET. DOI:10.13140/RG.2.2.12542.20802.
Veloz, G. (2022, 26 agosto). Propósito claro: generar electricidad porque el país lo necesita. Revista Granma. [Cited: 18, may, 2023]. Available in: https://www.granma.cu/cuba/2022-08-26/proposito-claro-generar-electricidad-porque-el-pais-lo-necesita-26-08-2022-23-08-30.