Evaluation of the quantitative precipitation forecast of the SisPI2.0

Main Article Content

Iliana Cruz Torres
Maibys Sierra Lorenzo

Abstract

The Short-range prediction system, better known as SisPI, offers very short-term data on wind, temperature, precipitation, solar radiation and other meteorological variables. The first version of the model (SisPI1.0) underwent changes in its internal configuration: modification in the solar radiation parameters, incorporation of the “shallow convection” parameterization and extension of the forecast period up to 48 hours. The changes made room for its second version (SisPI2.0), experimentally operational since September 2020, at the Institute of Meteorology (INSMET). The SisPI2.0 had to be evaluated in order to know the effects of the change made, especially, you needed to know its ability to quantitatively forecast precipitation. It will also, be necessary to know the quality of its forecast with respect to SisPI1.0, and the ability to simulate the weather 48 hours in advance. The study performs the spatial verification of the SisPI2.0 forecast based on the GPM observations, and the selection of four study cases of the rainy season of 2021. The MODE was used as an evaluation method. SisPI2.0 precipitation forecast turned out to be more effective in object identification than SisPI1.0, but quantitatively they make similar errors, in addition SisPI2.0 suggests to have good ability to forecast precipitation with a period of up to 48 hours in advance.

Downloads

Download data is not yet available.

Article Details

How to Cite
Cruz TorresI., & Sierra LorenzoM. (2023). Evaluation of the quantitative precipitation forecast of the SisPI2.0. Revista Cubana De Meteorología, 29(2). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/765
Section
Original Articles

References

Alfonso, S. (2020). Evaluación del Sistema de Pronóstico Inmediato [Tesis]. Universidad de La Habana.
Cabrera, E. B. (2016). Evaluación de imágenes satelitales de precipitaciónes GPM (Global Precipitation Measurement) a escala mensual para el Azuay.
Cabrera and Sánchez (s.f.). FICHA TÉCNICA DESCRIPTIVA. Universidad del Azuay. Facultad de Ciencia y Tecnología, Ingeniería Civil y Gerencia en Construcciones.
Chen, X., Yuan, H., and Xue, M. (2018). Spatial spread‐skill relationship in terms of agreement scales for precipitation forecasts in a convection‐allowing ensemble. Quarterly Journal of the Royal Meteorological Society, 144(710), 85-98.
Gilleland, E., and Gilleland, M. E. (2022). Package ‘SpatialVx’. framework, 15, 51-64.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, T. (2014). The Global Precipitation Measurement Mission. Bulletin of the American Meteorological Society, 95(5), 701-722. https://doi.org/10.1175/BAMS-D-13-00164.1
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J. (2019). GPM IMERG final precipitation L3 half hourly 0.1 degree x 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA.
Jung, Y., and Lin, Y.-L. (2016). Assessment of a regional-scale weather model for hydrological applications in South Korea. Environ. Nat. Resour. Res, 6(2), 28-41.
Liu, J.-Q., Li, Z.-L., and Wang, Q.-Q. (2021). Quantitative Precipitation Forecasting Using an Improved Probability-Matching Method and Its Application to a Typhoon Event. Atmosphere, 12(10), 1346.
Moreno, S., González, C. M., and Ferrer, A. L. (2017). Verificación del pronóstico cuantitativo de la precipitación del modelo WRF para las provincias Artemisa, Mayabeque y La Habana. Revista Cubana de Meteorología, 23(2), 148-163.
Palma, G. M., and Silva, M. A. (2018). Improving the quantitative precipitation forecast: A ddeplearning approach.
Park, S., and Park, S. K. (2021). A micro-genetic algorithm (GA v1. 7.1 a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4. 0.3) for quantitative precipitation forecast in Korea. Geoscientific Model Development, 14(10), 6241-6255.
Roberts, N. (2008). Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 15(1), 163-169.
Roberts, N. M., and Lean, H. W. (2008). Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Monthly Weather Review, 136(1), 78-97.
Sierra, M., Borrajero, I., Ferrer, A., Morfa, Y., Morejón, Y., and Hinojosa, M. (2017). Estudios de sensibilidad del SisPI a cambios de la PBL, la cantidad de niveles verticales y las parametrizaciones de microfísica y cúmulos, a muy alta resolución. Informe Científico de resultado, La Habana, Cuba: Instituto de Meteorología, 26p.,[Consulted: 15 septiembre, 2020].
Sierra, M., Ferrer, A., Hernández, R., González, Y., Cruz, R., Borrajero, I., and Rodríguez, C. (2015). Sistema automático de predicción a mesoescala de cuatro ciclos diarios. Informe de Resultado, Instituto de Meteorología: La Habana, Cuba.
Sierra, M., Medina, J., Sille, J., Fuentes, A., Alfonso, S., and Gascon, T. (2022). Verification by Multiple Methods of Precipitation Forecast from HDRFFGS and SisPI Tools during the Impact of the Tropical Storm Isaias over the Dominican Republic. Atmosphere, 13(3), 495.
Sukovich, E. M., Ralph, F. M., Barthold, F. E., Reynolds, D. W., and Novak, D. R. (2014). Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Weather and forecasting, 29(4), 894-911.
Surcel, M., Zawadzki, I., and Yau, M. (2015). A study on the scale dependence of the predictability of precipitation patterns. Journal of the Atmospheric Sciences, 72(1), 216-235.
Wang, C.-C. (2015). The more rain, the better the model performs-The dependency of quantitative precipitation forecast skill on rainfall amount for typhoons in Taiwan. Monthly Weather Review, 143(5), 1723-1748.
Wardah, T., Kamil, A., Sahol Hamid, A., and Maisarah, W. (2011). Quantitative precipitation forecast using MM5 and WRF models for Kelantan River basin. Int. J. Geol. Environ. Eng, 5, 712-716.
Warner, T. T. (2010). Numerical weather and climate prediction. cambridge university press.
Westreicher, G. (s. f.). Cuartil. Economipedia. Recuperado 14 de noviembre de 2022, de https://economipedia.com/definiciones/cuartil.html
Yu, X., Park, S. K., Lee, Y. H., and Choi, Y. S. (2013). Quantitative precipitation forecast of a tropical cyclone through optimal parameter estimation in a convective parameterization. SOLA, 9, 36-39.
Zahraei, A., Hsu, K., Sorooshian, S., Gourley, J. J., Hong, Y., and Behrangi, A. (2013). Short-term quantitative precipitation forecasting using an object-based approach. Journal of hydrology, 483, 1-15.
Zhang, H., and Pan, L. (2022). Diagnostic Analysis of Multimodel Rainstorm Forecast for Cases Based on MODE Method. Atmosphere, 13(7), 1047.

Most read articles by the same author(s)