Sensitivity study of boundary layer parametrizations for fog/haze events numerical forecasts on José Martí International Airport from Havana
Main Article Content
Abstract
In this research a sensitivity analisys of four Planetary Boundary Layer (PBL) parametrizations used in the simulation of a dense fog event that occurred on January 4th, 2019 at the José Martí Internacional Airport is carried out. At the first place the performance of differents algorithms that estimate the horizontal visibility is evaluated for to select the more optimal over the study area. At the second place is evaluated the behavior of the selected algorithm and meteorological variables related with fog/haze events with the diferents PBL schemes. The analisys leads to the fact that the algorithms related with dew point depression presented the best results with a critical detection index (CSI) of 0.75. All PBL schemes at the time of occurrence of the event underestimated the relative humidity in a threshold of 2 - 10%, overestimated the dew point and temperature values in a threshold of 0.5 - 3.5 °C and 0.5 - 2.5 °C respectively, as well as the wind speed between 2 - 3 m/s values. The more realistic PBL parametrization was ACM2, presenting the lowest statistical errors and a CSI of 0.87. This suggest a better representation of the physical processes that occur in the PBL and therefore a greater ability in fog/haze events forecasting over the airport.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
AIP, (2014). IACC. Publicación de Información Aeronáutica (AIP). Instituto de Aeronáutica Civil., 40 pp.
Álvarez, E. L.; Borrajero, M. I.; Álvarez, M. R.; & León, L. A. (2011ª). “Estudio de la marcha interanual de la frecuencia de ocurrencia de los fenómenos nieblas y neblinas a partir del código de estado de tiempo presente”. Revista Ciencias de la Tierra y el Espacio, (12): 31-46, ISSN: 1729-3790
Avolio, E. Federico; Miglietta, M. M.; Feudo, L. T.; Calidonna, C. R.; y Sempreviva, A. M. (2017). Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign. Atmospheric Research.
Bang, C. H.; Lee, J. W.; y Hong, S. Y. (2009). Predictability experiments of fog and visibility in local airports over Korea using the WRF model. Korean Soc. Atmos., Vol. 24:92-101 pp.
Banks, R. F.; Tiana-Alsina, J.; Baldasano, J. M.; Rocadenbosch, F.; Papayannis, A.; Solomos, S.; Tzanis, C. G. (2016). Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmospheric Research., 185-201 pp.
Bergot T.; D. Guedalia (1993): Numerical Forecasting of Radiation Fog. Part I: Numerical Model and Sensitivity Tests. MWR, Vol. 122, No. 6, 12181230. DOI: 10.1175/1520-0493
Cohen, A. E.; Cavallo, S. M.; Coniglio, M. C.; and Brooks, H. E. (2015). A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments. Weather and Forecasting., Vol. 30:591-612 pp
Coniglio, M. M.; Correia, J.; Marsh, P. T.; Kong, F. (2013). Verification of Convection-Allowing WRF Model Forecasts of the Planetary Boundary Layer Using Sounding Observations. American Meteorological Society, Vol 28:842-862 pp.
Creighton G.; Kuchera E.; McCormick J.; Rentschler S.; Wickard B. (2014): AFWA Diagnostics in WRF. https://www2.mmm.ucar.edu/wrf/users/docs/
de Paula, Nórton Franciscatto; Scremin Puhales, Franciano; Anabor, Vagner; Dal Piva, Everson; de Lima Nascimento, Ernani (2015): Mean weather characteristics associated to radiation fog at Santa Maria-RS. Ciência e Natura, Santa Maria v.37 n.3, 2015, Set.- Dez. p. 613 - 624 Revista do Centro de Ciências Naturais e Exatas - UFSM ISSN impressa: 0100-8307 ISSN on-line: 2179-460X. DOI:10.5902/2179-460X17277.
Díaz A.; Góngora C.; Lobaina A.; Pérez A.; Coll P. (2019): Pronóstico numérico del viento a mesoescala y a corto plazo para el Aeropuerto Internacional “Jose Martí” de La Habana. Revista Brasileira de Meteorología v. 36, n 1, pp 1-12 DOI: https://dx.doi.org/10.1590/0102-77863610007
Entenza, L. T. (2006). Estudio Preliminar sobre la ocurrencia de niebla en el Aeroperto Internacional “José Matrí” de La Habana. Revista Cubana de Meteorología ., Vol. 13 No. 1.
García-Díez, M.; Fernández, J.; Fita, L.; Yagüe, C. (2013). Seansonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Royal Meteorological Society., Vol. 139.
Grillo, N. G. (2013). La niebla en el Aeropuerto Internacional “José Martí”, su relación con eventos y variables meteorológicas. Tesis en opción al título de Licenciatura en Meteorología. Instituto Superior de Tecnologías y Ciencias Aplicadas. La Habana, Cuba. Consultado marzo/2020
Hernández J. F.; González C. M.; González P. M. 2017. “Pronóstico de nieblas en las provincias de Artemisa, La Habana y Mayabeque”. IX Congreso Cubano de Meteorología , La Habana, Cuba. ISBN: 978-959-7167-60-0. Avaliable: Sociedad Meteorológica de Cuba. Consultado: marzo/2020.
Hong, S.-Y.; Noh, Y.; Dudhia, J. (2006). A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev., Vol. 134.
Hu, X.-M., Nielse Gammon, J. W., y Hang, F. (2010). Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. American Meteorological Society., Vol. 49:1831-1844 pp.
Jolliffe, I. T. and Stephenson, D. B. (2003). Forecast Verification: A Practitioner’s Guide in Atmospheric Science.
LeMone, M. A., Tewari, M., Chen, F., y Duhia, J. (2012). Objectively Determined Fair-Weather CBL Depths in the ARW-WRF Model and Their Comparison to CASES-97 Observations. Monthly Weather Review. American Meteorological Society., Vol. 141:30-54 pp.
Lin, C., Zhang, Z., Pu, Z., y Wang, F. (2017). Numerical Simulations of an Advection Fog Event over Shanghai Pudong International Airport with the WRF model. https://www.researchgate.net/publication/320820726, Vol. 31 No. 5:874-889pp.
Maura L.; Rojas Y.; Carnesoltas M.; Rubio C.; Laborde N.; Perigó E.; Baza R. (2008): Comportamiento de la niebla en la provincia de Guantánamo
Mellor, G. L. and Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., Vol. 20.
Moreno, M. G. y Gil, M. A. (2003). Análisis de la siniestralidad aérea por causa meteorológica (1970-1999). Investigaciones Geográficas. Instituto Universitario de Geografía. Universidad de Alicante., Vol. 30:23 pp.
Nakanishi, M. y Niino, H. (2006). An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteor., Vol. 119:397-407 pp.
Penc, R. S., Smith, J. A., Raby, J. W., Dumias, R. E., Reen, B. P., y Dawson, L. P. (2008). Intercomparation of 7 Planetary Boundary-Layer/Surface-Layer Physics Schemes over Compex Terrain for Battlefield Situational Awareness. US Army Research Laboratory.
Pleim, J. E. (2007). A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. Aplied Meteorology and Climatology., Vol. 46:1383-1395 pp.
Pérez, A.; Mitrani, I.; y Díaz, O. (2014). Sistema de Predicción Numérica Océano-Atmósfera para la República de Cuba. Informe de Resultado Científico. Instituto de Meteorología. Centro de Física de la Atmósfera. https://modelos.insmet.cu/static/models/docs/.
Román-Cascón, C.; Yagüe C.; Sastre M.; Maqueda, G. (2012) : Observations and WRF simulations of fog events at the Spanish Northern Plateau. Adv. Sci.Res., 8, 11-18, doi: 10.5194 / asr-8-11-2012.
Ryerson William R. (2012): Toward improving short-range fog prediction in data-denied areas using the Air Force Agency Mesoscale Ensemble. https://calhoun.nps.edu/handle/10945/17454.
Steeneveld, G. J., Ronda, R. J., y Holtslag, A. A. (2015). The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Boundary-Layer Meteor. , Vol. 154:265-289 pp.
Sierra M.; Ferrer A.; Hernández R.; González Y.; Cruz R.; Borrajero I.; Rodríguez C. (2014) Sistema de Predicción a muy corto plazo basado en el Acoplamiento de Modelos de Alta Resolución y Asimilación de Datos. Informe de resultado. Programa: “Meteorología y Desarrollo Sostenible del País”. Instituto de Meteorología. DOI: 10.13140/RG.2.1.2888.1127 https://modelos.insmet.cu/static/models/docs/.
Sosa M.; O. Rodríguez; R. Hernández (1992): Las nieblas en las Provincias Habaneras. Revista Cubana de Meteorología, Vol. 5, No. 2, pp 28 34.
Stoelinga, M. T., & Warner, T. T. (1999). Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. Journal of Applied meteorology, 38(4), 385-404.