Vortex relocation method for the Numerical Tools for Hurricane Forecast (NTHF) system

Main Article Content

Onel Rodríguez-Navarro
Albenis Pérez-Alarcón
Arlett Díaz-Zurita

Abstract

This study evaluated the feasibility of applying a vortex relocation scheme based on a synthetic vortex in the Numerical Tools for Hurricane Forecast (NTHF) system, operating in the Department of Meteorology of the Higher Institute of Technologies and Applied Sciences, University of Havana. Hurricanes Dorian and Lorenzo and the tropical storm Karen were selected as case studies. The synthetic vortex in the entire vertical column was extracted from the NTHF simulations initialized with the GDAS (Global Data Assimilation System) outputs at 0.25 of the horizontal resolution of the 6 hours previous cycle. The new vortex replaced the vortex in the initialization fields of NTHF obtained from the forecast outputs of the global GFS (Global Forecast System) model at a horizontal resolution of 0.5 degrees. In all cases, the simulations were initialized at 0000 UTC with the boundary conditions updated every 6 hours. The results revealed that the vortex relocation scheme represented a more structured tropical cyclone (TCs). Nevertheless, the dynamic instability caused by the introduction of the synthetic vortex in the background field conditioned that the center of the TCs developed in a drier environment and the center of the system was colder, which led to an increase in the mean errors in the track and intensity forecast, concerning the experiments without vortex relocation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rodríguez-NavarroO., Pérez-AlarcónA., & Díaz-ZuritaA. (2022). Vortex relocation method for the Numerical Tools for Hurricane Forecast (NTHF) system. Revista Cubana De Meteorología, 28(2). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/629
Section
Original Articles

References

Avila, L., Stewart, S., Berg, R., & Hagen, A. B. (2020). Tropical Cyclone Report, Hurricane Dorian (Tropical Cyclone Report, p. 74). https://www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf
Biswas, M., Carson, L., Newman, K., Bernardey, L., Kalina, E., Grell, E., & Frimel, J. (2017). Community HWRF Users’ Guide (3.9a; Número 3.9a).
Cangialosi, J. P., Blake, E., DeMaria, M., Penny, A., Latto, A., Rappaport, E., & Tallapragada, V. (2020). Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Weather and Forecasting, 35(5), 1913-1922. https://doi.org/10.1175/WAF-D-20-0059.1
Chang, C. C. (2018). The impact of the vortex relocation scheme on hurricane initialization: Hurricane Joaquin (2015) as an example [Masters of Science]. Department of Atmospheric and Oceanic Science, University of Maryland College Park.
Hendricks, E. A., Peng, M. S., Ge, X., & Li, T. (2011). Performance of a dynamic initialization scheme in the Coupled Ocean-Atmosphere Mesoscale Prediction System for tropical cyclones (COAMPS-TC). Weather and forecasting, 26(5), 650-663. https://doi.org/10.1175/WAF-10-05051.1
Jolliffe, I. T., & Stephenson, D. B. (2012). Forecast verification: A practitioner’s guide in atmospheric science. John Wiley & Sons.
Kepert, J. D. (2009). An Observation Operator for the Variational Assimilation of Vortex Position and Intensity. Extended Abstracts, 1-106.
Kurihara, Y., Bender, M. A., & Ross, R. J. (1993). An initialization scheme of hurricane models by vortex specification. Monthly weather review, 121(7), 2030-2045. https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.
Kwon, H. J., Won, S.-H., Ahn, M.-H., Suh, A.-S., & Chung, H.-S. (2002). GFDL-type typhoon initialization in MM5. Monthly weather review, 130(12), 2966-2974. https://doi.org/10.1175/1520-0493(2002)130<2966:GTTIM>2.0.CO;2.
Kwon, I. H., & Cheong, H. B. (2010). Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex. Monthly Weather Review, 138(4), 1344-1367. https://doi.org/10.1175/2009MWR2943.1.
Leroux, M.-D., Wood, K., Elsberry, R. L., Cayanan, E. O., Hendricks, E., Kucas, M., Otto, P., Rogers, R., Sampson, B., & Yu, Z. (2018). Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall. Tropical Cyclone Research and Review, 7(2), 85-105. https://doi.org/10.6057/2018TCRR02.02.
Leslie, L. M., & Holland, G. (1995). On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteorology and Atmospheric Physics, 56(1), 101-110. https://doi.org/10.1007/BF01022523.
Liu, Q., Marchok, T., Pan, H.-L., Bender, M., & Lord, S. (2000). Improvements in hurricane initialization and forecasting at NCEP with global and regional (GFDL) models (p. 7) [Informe abreviado]. US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, Science Division.
Mesinger, F. (1977). Forward-backward scheme, and its use in a limited area model. Contributions to Atmospheric Physics, 50, 200-210.
Misirli, E., & Gurefe, Y. (2011). Multiplicative adams bashforth-moulton methods. Numerical Algorithms, 57(4), 425-439. https://doi.org/10.1007/S11075-010-9437-12.
Mitrani, I., Pérez-Bello, A., Vichot, A., Alonso, Y., González, Y., & Díaz, O. (2017). Numerical forecast of weather and wind waves, using WRF and WW3, on the Cuban territory and surrounding waters, and comparison with MM5+ WW3. Ciencias de la Tierra y el Espacio, 18(2), 86-100.
Montgomery, M. T., & Smith, R. K. (2014). Paradigms for tropical cyclone intensification. Australian Meteorological and Oceanographic Journal, 64, 37-66.
Pérez-Alarcón, A., Fernández-Alvarez, J. C., & Batista-Leyva, A. J. (2021). Performance Evaluation of Numerical Tools for Hurricane Forecast (NTHF) System during 2020 North Atlantic Tropical Cyclones Season. Environmental Sciences Proceedings, 8(1), 22. https://doi.org/10.3390/ecas2021-10332.
Pérez-Alarcón, A., Fernández-Alvarez, J., Díaz, O., Batista-Leyva, A., & Pérez, R. (2021). System for numerical forecast of intensity and trajectory of tropical cyclones in the North Atlantic basin. Revista Cubana de Meteorología, 27(1).
Pérez-Bello, A., Mitrani-Arenal, I., Díaz-Rodríguez, O. O., Wettre, C., & Hole, L. R. (2019). A numerical prediction system combining ocean, waves and atmosphere models in the Inter-American Seas and Cuba. Revista Cubana de Meteorología, 25(1), 109-120.
Pu, Z.-X., & Braun, S. A. (2001). Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Monthly Weather Review, 129(8), 2023-2039. https://doi.org/10.1175/1520-0493(2001)129<2023:EOBVTW>2.0.CO;2.
Rappin, E. D., Nolan, D. S., & Majumdar, S. J. (2013). A highly configurable vortex initialization method for tropical cyclones. Monthly weather review, 141(10), 3556-3575. https://doi.org/10.1175/MWR-D-12-00266.1.
Sierra, M., Ferrer, A. L., Valdés, R., González, Y., Cruz, R., Borrajero-Montejo, I., & Rodríguez, C. (2015). Automatic mesoscale prediction system of four daily cycles (p. 65) [Reporte de Resultado]. Instituto de Meteorología.
Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review, 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
Smith, R. K., Zhang, J. A., & Montgomery, M. T. (2017). The dynamics of intensification in a Hurricane Weather Research and Forecasting simulation of Hurricane Earl (2010). Quarterly Journal of the Royal Meteorological Society, 143(702), 293-308.
Tamsir, M., & Kumar, V. (2011). A semi-implicit finite-difference approach for two-dimensional coupled Burgers’ equations. International Journal of Scientific & Engineering Research, 2(6), 46-51.
Wu, C.-C., Lien, G.-Y., Chen, J.-H., & Zhang, F. (2010). Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter (EnKF). Journal of the Atmospheric Sciences, 67(12), 3806-3822.
Xiao, Q., Zou, X., & Wang, B. (2000). Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Monthly weather review, 128(7), 2252-2269. https://doi.org/10.1175/1520-0493(2000)128<2252:IASOAL>2.0.CO;2.

Most read articles by the same author(s)