Short-term numerical forecast of wind speed for the Gibara I and II wind farms
Main Article Content
Abstract
The present work was aimed at studying the numerical forecast of wind speed for the locations of the Gibara I and II wind farms. This will subsequently allow, together with the power curve of the wind turbines, to forecast the wind power of both wind farms in the short term. For this, the Weather Research & Forecasting (WFR) numerical weather model was used, which has shown good results in studies applied to wind energy as a renewable source. In the experiment carried out, 4 domains with resolutions of 27, 9, 3, and 1 km were used. To initialize the WRF model, the analysis data every 6 hours were used as boundary conditions (synoptic times of 0000, 0600, 1200 and 1800 UTC) of the GFS model for the months of January to July 2014. Information from the wind turbines located in both wind farms and from the Los Cocos prospecting mast, located in an intermediate zone between the two wind farms, was also used. In the case of the wind turbines, the SCADA data were used and in the case of the mast, the wind speed data at a height of 50 meters above the surface was used. The results show that the wind speed forecast errors, given by the statistics used, mean absolute error (MAE), root mean square error (RMSE) and BIAS, were lower for the 1 km domain in comparison with the other domains.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
IRENA, 2021: Renewable capacity statistics 2021 International Renewable Energy Agency (IRENA), Abu Dhabi. ISBN 978-92-9260-342-7, www.irena.org
Official Journal of the European Commission (2001): “Directiva 2001/77/CE del parlamento europeo y del consejo de 27 de septiembre de 2001 relativa a la promoción de la electricidad generada a partir de fuentes renovables de energía en el mercado interior de la electricidad,”, vol. L 283, Oct. 2001, págs. 33-40.
Lobo, M. G. (2010): Métodos de predicción de la generación agregada de energía eólica. Tesis Doctoral, Departamento de Ingeniería eléctrica, Universidad Carlos III de Madrid. 267 pp. http://gwec.net/wp-content/uploads/vip/GWEC_PRstats2017_EN-03_FINAL.pdf
Bollen M.H., Understanding Power Quality Problems: Voltage Sags and Interruptions, Wiley-IEEE Press, 1999.
Gnativ R.M. y J.V. Milanović, “Qualitative and quantitative analysis of voltage sags in networks with significant penetration of embedded generation,”
Nicksson C. A. de Freitas, M. S. Silva, M.S. Sakamoto (2018): Wind Speed Forecasting: A Review. Int. Journal of Engineering Research and Application, ISSN: 2248-9622, Vol. 8, Issue 1, (Part -1) January 2018, pp.04-09.
CRISTEA C., M. Eremia, L. Toma (2015): Wind power forecasting accuracy assessment for multiple time scales. U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 4, 2015 ISSN 2286-3540
Kalmikov A. (2018): Wind Power Fundamentals. DOI: 10.1016/B978-0-12-809451-8.00002-3. https://www.researchgate.net/publication/317119352.
Erbetta I: (2010): Predicción de la potencia para la operación de parques eólicos. Memoria para optar al título de ingeniero civil electricista. Univ. Chile, Fac. Ciencias Físicas y Matemáticas, Dpto de Ing. Elect. 86 pp.
Chang, W.-Y. (2014): A Literature Review of Wind Forecasting Methods. Journal of Power and Energy Engineering, 2, 161-168. http://dx.doi.org/10.4236/jpee.2014.24023
Giebel G., J. Badger, I. Martí Perez, P. Louka, G. Kallos, A. M. Palomares, C. Lac, G. Descombes (2011)Short-term Forecasting Using Advanced Physical Modelling – The Results of the Anemos Project (2006):: Short-term Forecasting Using Advanced Physical Modelling – The Results of the Anemos Project. Results from mesoscale, microscale and CFD modelling, Anemos_PhysicalModelling_EWEC_Athens_2006.doc, 2006-02-08.
Saroha S., S. K. Aggarwal (2015): A Review and Evaluation of Current Wind Power Prediction Technologies WSEAS TRANSACTIONS on POWER SYSTEMS E-ISSN: 2224-350X, Volume 10, 2015
Aggarwal S.K., Meenu Gupta (2013): Wind Power Forecasting: A Review of Statistical Models International Journal of Energy Science (IJES) Volume 3 Issue 1, February 2013
Madsen H., H. Aalborg Nielsen (2010): The State-of-the-art of Wind Power Forecasting in Europe. IAWIND symposium, Iowa, 2010-04-06 – p. 1
Ma L., Li B., Yang Z. B., Du J. and Wang J. (2014): A new combination prediction model for short-term Wind Farm Output Power based on Meteorological Data Collected by WSN. International Journal of Control and Automation, vol. 7, No. 1, pp171-180, http://dx.doi.org/10.14257/ijca.2014.7.1.14.
López E., C. Valle, H. Allende, E. Gil and H. Madsen (2014): Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies 2018, 11, 526; doi: 10.3390/en11030526.
Al-Yahyai S., Y. Charabi, A. Gastli (2010): Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews 14 (2010) 3192–3198.
Giebel, Richard Brownsword, George Kariniotakis, Michael Denhard, Caroline Craxl (2011): The State-Of-The-Art in Short-Term Prediction of Wind Power. A Literature Overview, 2nd Edition G. Advanced Tools for the Management of Electricity Grids with Large-Scale Wind Generation”. ANEMOS Project, Specific Targeted Research Project Contract N°: 038692.
Cristea C., M. Eremia, L. Toma (2015): Wind power forecasting accuracy assessment for multiple timescales. U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 4, 2015 ISSN 2286-3540.
Billinton R., H. Chen, and R. Ghajar (1996): “Time-series models for reliability evaluation of power systems including wind energy,” Microelectronics and Reliability, vol. 36, no. 9, pp. 1253 -1261, Sept. 1996. SCADA, http://www.uco.es/grupos/eatco/automatica/ihm/descargar/scada.pdf
Roque A., M. Sierra, I. Borrajero y A. Ferrer (2015): Pronóstico de viento a corto plazo en torres de referencia meteorológica para el programa eólico cubano. Revista Cubana de Meteorología, Vol.22, No.2, pp.164-187, 2016, ISSN: 0864-151X.
Sierra M., Ferrer A., Borrajero I. (2014): SistMAE automático de predicción a mesoescala de cuatro ciclos diarios. Proyecto: “SistMAE de Predicción a muy corto plazo basado en el Acoplamiento de Modelos de Alta Resolución y Asimilación de Datos”. Informe Científico – Técnico, Instituto de Meteorología.
Roque A., M. Sierra, I. Borrajero y A. Ferrer (2018): Elaboración de pronóstico energético a corto plazo para parques eólicos. Revista de Ingeniería energética, 2018, vol. 39, n. 2, mayo/agosto, p. 115-122. Centro de Investigación y Pruebas Electro energéticas, Facultad de Ingeniería Eléctrica, Universidad Tecnológica de La Habana, José Antonio Echeverría, Cujae, ISSN 1815-5901 RNPS- 1958.
Soltura R., A. González, R. Novo, G. Leiva, O. Vera, E. Ochoa (2011): Resultados del Programa de Prospección Eólica 2005-2010. Certificación de los datos de viento y optimización de la red. CIER 2011, Palacio de las Convenciones de La Habana.
Mesoscale & Microscale Meteorology Division. 2014. ARW Version 3 Modeling System User’s Guide. Complementary to the ARW Tech Note, 411pp. NCAR: Boulder, Colorado, USA.Web:http://www2.mmm.ucar.edu/wrf/users/docs/userguideV3/ARWUsersGuideV3.pdf
Guerra R. (2015): Desarrollo de las Fuentes Renovables en Cuba. Conferencia Internacional de Energía Renovable, Eficiencia energética y Educación Energética (CIER 2015), Palacio de Las Convenciones de La Habana.
Mitrani I., L. Álvarez, I. Borrajero. Aplicación optimizada del MM5V3 sobre el territorio cubano mediante el uso de una computadora personal. Revista Cubana de Meteorología, 2003.
Mitrani I., C. González, I. Borrajero. El uso de MM5V3 en la predicción de eventos peligrosos sobre el territorio cubano. Memorias del Taller de Meteorología Tropical, TROPICO-2004, La Habana (publicación en soporte técnico), ISBN: 959-7167-02-6., 2004.
A. Pérez, Mitrani I y Díaz O (2014): SistMAE de Predicción Numérica Océano Atmósfera (SPNOA), Informe Científico – Técnico, Instituto de Meteorología.
Emeis, S (2013): Wind Energy Meteorology. Atmospheric Physics for Wind Power Generation. Springer-Verlag Berlin Heidelberg 2013. ISBN 978-3-642-30523-8 (eBook) DOI 10.1007/978-3-642-30523-8
Pasquill, F. (1961): The estimation of the dispersion of wind-borne material. Meteorological Magazine, 90, 33-49.
MEASNET (2009): Power performance measurement procedure, Version 5, December – 2009. http://www.measnet.com/wp-content/uploads/2011/06/power5.pdf
Roque A., M. Carrasco, P. Reyes (2015): Características del perfil vertical del viento en la capa superficial atmosférica sobre Cuba, atendiendo a la estratificación térmica de la atmósfera. Rev. Cienc. Tierra y Esp., 2015 / julio-diciembre / Vol. 16 No. 2, ISSN 1729-3790
Carrasco, M., A. ROQUE, O. MONTARTE, and D. RIVAS (2011): Local Breeze Effects on the Wind Energy Generation in the Northern Coast of Cuba. WIND ENGINEERING, VOLUME 35, NO. 6, 2011.
Martínez B., A. Roque (2015): Disminución de la rapidez del viento en la capa superficial atmosférica. Su influencia en el aprovechamiento eólico. Revista Cubana de Meteorología, Vol. 21, No. 1, ene - jun. pp. 49 - 61, 2015.
Petersen, E.L y Troen, I. (1986): European Wind Atlas. European Wind Energy Association, Conference and Exhibition, Roma, Italy.
IRENA (2021), Renewable capacity statistics 2021 International Renewable Energy Agency (IRENA), Abu Dhabi. www.irena.org/Publications