Analysis of ocean dynamics during the impact of Hurricane Matthew using ocean-atmosphere coupling
Main Article Content
Abstract
The main goal of this investigation is to improve the understanding of ocean-atmosphere coupling during hurricanes. The present work involves the integration of the ocean-atmosphere coupled components of the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System in the Very Short Term Prediction System (SisPI). Three experiments are performed: First, using a dynamic sea surface temperature, consistent with the daily updated atmospheric model Weather Research and Forecast (SisPI); second, using the Regional Oceanic Modeling System and third, using a dynamic coupling between the atmospheric and the oceanic models. The coupled system improves the tracks of the hurricane simulations respect to the SisPI. The use of the oceanic model allows a more detailed representation of the sea surface temperature. Using the coupled model, a more precise diurnal cycle of the surface net heat fluxes is obtained.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Aristizabal-Vargas, M. F.; Miles, T.; Glenn, S.; Kim, H. S. & Mehra, A. 2020. “Validation of the HWRF-POM and HWRF-HYCOM hurricane forecasting systems during Hurricane Dorian using glider observations”. In: Global Oceans 2020: Singapore - U.S. Gulf Coast, DOI: 10.1109/IEEECONF38699.2020.9389066. , [Consulted: May 12, 2021].
Ballester, M. & Rubiera, J. 2016. Temporada ciclónica de 2016 en el Atlántico Norte. Hurricane Season Report, Website of the Cuban Institute of Meteorology. Available:
Chen, S. S.; Price, J. F.; Zhao, W.; Donelan, M. A. & Walsh, E. J. 2007. “The CBLAST-Hurricane Program and the Next- Generation Fully Coupled Atmosphere-Wave-Ocean Models for Hurricane Research and Prediction”. Bulletin of the American Meteorology Society, 88: 311-317. DOI:10.1175/BAMS-88-3-311.
Egbert, G. D. & Erofeeva, S. Y. 2002. “Efficient inverse modeling of barotropic ocean tides”. Journal of Atmospheric and Oceanic Technology, 19(2): 183-204, ISSN: 07390572, DOI: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.
Gemmill, W.; Katz, B. & Li, X. 2007. Daily Real-Time, Global Sea Surface Temperature - High-Resolution Analysis: RTG_SST_HR. Technical Note 260, NOAA/NWS/NCEP/MMAB, 39 pp. Available:
Grell, G. A. & Freitas, S. R. 2014. “A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling”. Atmospheric Chemistry and Physics, 14: 5233-5250, DOI: 10.5194/acp-14-5233-2014.
Haidvogel, D. B.; Arango, H.; Budgell, W. P.; Cornuelle, B. D.; Curchitser, E.; Di Lorenzo, E.; Fennel, K.; Geyer, W. R.; Hermann, A. J.; Lanerolle, L.; Levin, J.; McWilliams, J. C.; Miller, A. J.; Moore, A. M.; Powell, T. M.; Shchepetkin, A. F.; Sherwood, C. R.; Signell, R. P.; Warner, J. C. & Wilkin, J. 2008. “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System”. Journal of Computational Physics, 227(7): 3595-3624, ISSN: 10902716, DOI: 10.1016/j.jcp.2007.06.016.
Hegermiller, C. A.; Warner, J. C.; Olabarrieta, M. & Sherwood, C. R. 2019. “Wave - Current Interaction between Hurricane Matthew Wave Fields and the Gulf Stream”. Journal of Physical Oceanography, 49: 2883-2900, DOI: 10.1175/JPO-D-19-0124.1.
Hunter, J. D. 2007. “Matplotlib: A 2D Graphics Environment”. Computing in Science & Engineering, 9: 90-95. DOI: 10.1109/MCSE.2007.55
Jones, P. W. 1999. “First-and second-order conservative remapping schemes for grids in spherical coordinates”. Monthly Weather Review, 127(9): 2204-2210. DOI: 10.1175/15200493(1999)127%3C2204:FASOCR%3E2.0.CO;2
Kim, H. S.; Lozano, C.; Tallapragada, V.; Iredell, D.; Sheinin, D.; Tolman, H. L.; Gerald, V. M. & Sims, J. 2014. “Performance of ocean simulations in the coupled HWRF-HYCOM model”. Journal of Atmospheric and Oceanic Technology, 31(2): 545-559, ISSN: 07390572, DOI: 10.1175/JTECH-D-13-00013.1.
Landsea, C. W. & Franklin, J. L. 2013. “Atlantic hurricane database uncertainty and presentation of a new database format”. Monthly Weather Review, 141(10): 3576-3592, ISSN: 00270644, DOI: 10.1175/MWR-D-12-00254.1.
Larson, J.; Jacob, R. & Ong, E. 2005. “The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models”. International Journal of High Performance Computing Applications, 19(3): 277-292, ISSN: 10943420, DOI: 10.1177/1094342005056115.
Lee, C. Y. & Chen, S. S. 2012. “Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere-wave-ocean models and observations”. Journal of the Atmospheric Sciences, 69(12): 3576-3594, ISSN: 00224928, DOI: 10.1175/JAS-D-12-046.1.
Lim, J.-O. J.; Hong, S. & Dudhia, J. 2004. “The WFR Single-Moment Microphysics Scheme and Its Evaluation of the Simulation of Mesoscale Convective Systems”. In: 20th Conference on Weather Analysis and Forecasting / 16th Conference on Numerical Weather Prediction, USA: American Meteorological Society, pp. 1-15. Available:
Maturi, E.; Harris, A.; Merchant, C.; Mittaz, J.; Potash, B.; Meng, W. & Sapper, J. 2008. “Noaa’s sea surface temperature products from operational geostationary satellites”. Bulletin of the American Meteorological Society, 89(12): 1877-1888, Available:
Michalakes, J.; Dudhia, J.; Gill, D.; Henderson, T.; Klemp, J.; Skamarock, W. & Wang, W. 2005. “The weather research and forecast model: software architecture and performance”. In: Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, World Scientific, pp. 156-168, DOI: 10.1142/9789812701831_0012. , [Consulted: May 12, 2021].
Millman, K. J. & Aivazis, M. 2011. “Python for Scientists and Engineers”. Computing in Science & Engineering, 13: 9-12. DOI: 10.1109/MCSE.2011.36.
Mitrani Arenal, I.; Pérez Bello, A.; Cabrales Infante, J.; Povea Pérez, Y.; Hernández González, M. & Díaz Rodríguez, O. O. 2019. “Coastal flood forecast in Cuba , due to hurricanes , using a combination of numerical models”. Revista Cubana de Meteorología, 25(2): 121-138, DOI: E-ISSN: 0864-151X.
Nelson, J.; He, R.; Warner, J. C. & Bane, J. 2014. “Air-sea interactions during strong winter extratropical storms”. Ocean Dynamics, 64(9): 1233-1246, ISSN: 16167228, DOI: 10.1007/s10236-014-0745-2.
Olabarrieta, M.; Warner, J. C.; Armstrong, B.; Zambon, J. B. & He, R. 2012. “Ocean-atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system”. Ocean Modelling, 43-44: 112-137, ISSN: 14635003, DOI: 10.1016/j.ocemod.2011.12.008.
Oliphant, T. E. 2007. “Python for Scientific Computing”. Computing in Science & Engineering, 9: 10-20. DOI: 10.1109/MCSE.2007.58.
Pant, V. & Prakash, K. R. 2020. “Response of Air - Sea Fluxes and Oceanic Features to the Coupling of Ocean - Atmosphere - Wave During the Passage of a Tropical Cyclone”. Pure and Applied Geophysics, DOI: 10.1007/s00024-020-02441-z.
Peng, S. Q.; Liu, D. L.; Sun, Z. B. & Li, Y. N. 2012. “Recent advances in regional air-sea coupled models”. Science China Earth Sciences, 55(9): 1391-1405, ISSN: 16747313, DOI: 10.1007/s11430-012-4386-3
Pérez Bello, A.; Mitrani Arenal, I. & Díaz Rodríguez, O. O. 2014. Sistema de Predicción Numérica Océano-Atmósfera para la República de Cuba. Informe de Resultado Científico, 33 p., ISBN: 9788578110796, [Consulted: June 14, 2021].
Pérez-Bello, A.; Mitrani-Arenal, I.; Díaz-Rodríguez, O. O.; Wettre, C. & Hole, L. R. 2019. “A numerical prediction system combining ocean , waves and atmosphere models in the Inter-American Seas and Cuba”. Revista Cubana de Meteorología, 25(1): 109-120, ISSN: 2664-0880, Available:
Renault, L.; Chiggiato, J.; Warner, J. C.; Gomez, M.; Vizoso, G. & Tintoré, J. 2012. “Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea”. Journal of Geophysical Research: Oceans, 117(9): 1-25, ISSN: 21699291, DOI: 10.1029/2012JC007924.
Shchepetkin, A. F. & McWilliams, J. C. 2005. “The regional oceanic modeling system (roms): a split-explicit, free-surface, topography-following-coordinate oceanic model”. Ocean Modelling, 9(4): 347-404. DOI: 10.1016/j.ocemod.2004.08.002.
Sierra Lorenzo, M.; Ferrer Hernández, A. L.; Hernández Valdés, R.; González Mayor, Y.; Cruz Rodríguez, R. C.; Borrajero Montejo, I. & Rodríguez Genó, C. F. 2014. Sistema automático de predicción a mesoescala de cuatro ciclos diarios. Informe de Resultado Científico. 71 p., DOI: 10.13140/RG.2.1.2888.1127 Available:
Sierra Lorenzo, M.; Borrajero Montejo, I.; Hinojosa Fernández, M.; Roque Carrasco, A.; Genó Rodríguez, C. F.; Vázquez Proveyer, L. & Ferrer Hernández, A. L. 2016. “Herramientas de detección , reporte y evaluación para salidas de modelos de pronóstico numérico desarrollado en Cuba Detection , reporting and evaluation tools for outputs from numerical forecast models developed in Cuba Introducción”. Revista Cubana de Meteorología, 22(2): 150-163, DOI: ISSN: 0864-151X.
Sierra Lorenzo, M.; Borrajero Montejo, I.; Ferrer Hernández, A. L.; Morfa Ávalos, Y.; Morejón Loyola, Y. & Hinojosa Fernández, M. 2017. Estudios de sensibilidad del SisPI a cambios de la PBL, la cantidad de niveles verticales y, las parametrizaciones de microfísica y cúmulos, a muy alta resolución. Informe de Resultado Científico. 26 p., DOI:10.13140/RG.2.2.29136.00005 .Available:
Van der Walt, S.; Colbert, S. C. & Varoquaux, G. 2011. “The NumPy Array: A Structure for Efficient Numerical Computation.”. Computing in Science & Engineering, 13: 22-30. DOI: 10.1109/MCSE.2011.37.
Vázquez Proveyer, L.; Sierra Lorenzo, M.; Cruz Rodríguez, R. C. & Bezanilla Morlot, A. 2017. “Estudios de sensibilidad en la interacción numérica océano-atmósfera”. Ciencias de la Tierra y el Espacio, 18(1): 59-70. ISSN 1729-3790. Available: http://www.iga.cu/wp-content/uploads/2019/05/estudios-de-sensibilidad-en-la-interacci%C3%B3n-num%C3%A9rica-oc%C3%A9ano-atm%C3%B3sfera_2doenv.pdf
Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; Van der Walt, S.J.; Brett, M.; Wilson, J.; Millman, K.J.; Mayorov, N.; Nelson, A.R.J.; Jones, E.; Kern, R.; Larson, E.; Carey, C.J.; Polat, I.; Feng, Y.; Moore, E.W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E.A.; Harris, C.R.; Archibald, A.M.; Ribeiro, A.H.; Pedregosa, F.; Van Mulbregt, P. & SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272. DOI:10.1038/s41592-019-0686-2.
Wallcraft, A.; Carroll, S.; Kelly, K. & Rushing, K. 2003. Hybrid coordinate ocean model (hycom) version 2.1.User’s Guide. Guidebook Report, USA: Naval Research Laboratory, 77 p. Available:
Warner, J. C.; Armstrong, B.; He, R. & Zambon, J. B. 2010. “Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System”. Ocean Modelling, 35(3): 230-244, ISSN: 14635003, DOI: 10.1016/j.ocemod.2010.07.010.
Warner, J. C.; Schwab, W. C.; List, J. H.; Safak, I.; Liste, M. & Baldwin, W. 2017. “Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy”. Continental Shelf Research, 138: 1-18, ISSN: 18736955, DOI: 10.1016/j.csr.2017.02.003, Available:
Weatherall, P.; Marks, K. M.; Jakobsson, M.; Schmitt, T.; Tani, S.; Arndt, J. E.; Rovere, M.; Chayes, D.; Ferrini, V. & Wigley, R. 2015. “A new digital bathymetric model of the world’s oceans”. Earth and Space Science, 2(8): 331-345. DOI: 10.1002/2015EA000107.
Zambon, J. B.; He, R. & Warner, J. C. 2014a. “Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model”. Ocean Dynamics, 64(11): 1535-1554, ISSN: 16167228, DOI: 10.1007/s10236-014-0777-7.
Zambon, J. B.; He, R. & Warner, J. C. 2014b. “Tropical to extratropical: Marine environmental changes associated with Superstorm Sandy prior to its landfall”. Geophysical Research Letters, 41(24): 8935-8943, ISSN: 19448007, DOI: 10.1002/2014GL061357.