Relation between the increment of thunderstorms, temperature and aerosols at Casablanca station

Main Article Content

Lourdes Álvarez-Escudero
Israel Borrajero-Montejo
Juan Carlos Peláez-Chávez

Abstract

A World wide increment has been detected in atmospheric lightning related to the increase in surface air temperature, sea surface temperature and aerosol density. This work aims to an analysis of the relation between the annual courses of thunderstorms occurrence, the surface air temperature and the occurrence of haze and smoke reports at Casablanca meteorological station in Havana City, which has a very reliable series of tri-hourly observations for a period of 45 years. The thunderstorms series is also related, for a shorter period, to an aerosol index series. The study yields that the frequency of thunderstorms observations has increased by 5% for the period with a highly significant growing trend. Yearly average temperatures also show a highly significant increase and the best correlation is reached for the yearly frequency of occurrence of temperatures above 30°C, where 46% of the variance of thunderstorms occurrence is explained. The haze occurrence reports have also a highly significant trend and show a correlation of 0.65 with thunderstorms. Aerosol index has a growing trend for 2005 - 2016 and explains 58% of the variance of thunderstorms frequency.

Downloads

Download data is not yet available.

Article Details

How to Cite
Álvarez-EscuderoL., Borrajero-MontejoI., & Peláez-ChávezJ. C. (2019). Relation between the increment of thunderstorms, temperature and aerosols at Casablanca station. Revista Cubana De Meteorología, 25(3). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/486
Section
Original Articles

References

Álvarez, L; Borrajero, I; Álvarez, R; Aenlle, L; Rivero, I; Iraola, C; Rojas, Y & Hernández, M. 2012. “Estudio de la marcha interanual de la frecuencia de ocurrencia de observaciones con tormenta para el territorio cubano”. Revista de Climatología, 12: 1-21, http://webs.ono.com/reclim/reclim12a.pdf .
Álvarez-Escudero, L. & Borrajero, I. 2014a. “Análisis de la marcha interanual de fenómenos meteorológicos para las tres estaciones que triangulan la provincia de La Habana, Cuba”. Cienc. Tierra y Esp., 15(1):12 - 22.
Álvarez-Escudero, L.; Borrajero, I. & Barcenas, M. 2014b. “Análisis de la calidad de series largas de registros de código de estado del tiempo presente para las estaciones de Cuba”. Revista Cubana de Meteorología, 20(1): 3 - 9, http://www.insmet.cu/contenidos/biblioteca/revistas/2014/n1/1.pdf.
Álvarez-Escudero, L.; Borrajero, I. & Barcenas, M. 2014c. “Análisis de la marcha interanual de fenómenos determinados por el código de tiempo presente para las estaciones de Cuba”. Revista Cubana de Meteorología , 20(2): 56 - 69, http://www.insmet.cu/contenidos/biblioteca/revistas/2014/n2/6.pdf.
Boccippio, D. J.; Goodman, S.J. & Heckman, S. 2000. “Regional differences in tropical lightning distributions”. J. Appl. Met. 39: 2231-2248.
Cecil, D. J.; Buechler, D. E. & Blakeslee, R. J. 2014. “Gridded lightning climatology from TRMM-LIS and OTD: Dataset description”. Atmos. Res., 135-136: 404-414, DOI:10.1016/j.atmosres.2012.06.028.
Cecil, D. J.; Buechler, D. E. & Blakeslee, R. J. 2015. “TRMM LIS Climatology of Thunderstorm Occurrence and Condicional Lightning Flash Rates”. Journal of Climate, 28: 6536 - 6547, DOI: 10.1175/JCLI-D-15-0124.1
Christian, H. J.; Blakeslee, R. J.; Boccippio, D. J.; Boeck, W. L.; Buechler, D. E.; Driscoll, K. T.; Goodman, S. J.; Hall, J. M.; Koshak, W. J.; Mach, D. M. & Stewart, M. F. 2003. “Global frequency and distribution of lightning as observed from space by the optical transient detector”. J. Geophys. Res, 108(D1), 4005, DOI:10.1029/2002JD002347.
Collier, A. B.; Bürgesser, R. E. & Ávila, E .E. 2013. “Suitable regions for assessing long term trends in lightning activity”. J. Atmos. Sol-Terr. Phys., 92: 100-104, DOI:10.1016/j.jastp.2012.10.012.
Declan, L., F.; Doherty, R. M.; Oliver Wild, O.; Stevenson, D. S.; MacKenzie, I. A. & Blyth, A. M., 2018. “A projected decrease in lightning under climate change”. Nature Climate Change Letters, DOI:10.1038/s41558-018-0072-6
De Pablo, F. & Rivas Soriano, L. 2002. “Relationship between cloud-to-ground lightning flashes over the Iberian Peninsula and sea surface temperature”. Quart. J. Roy. Met. Soc. 128: 173-183.
De Rubertis, D. 2006. “Recent Trends in Four Common Stability Indices Derived from U.S. Radiosonde Observations”. Journal of Climate, 19: 309-323.
Garcia-Santos, Y. & Álvarez-Escudero, L. 2018. “Climatología de las tormentas eléctricas determinadas a partir del código de estado de tiempo pasado”. Revista Cubana de Meteorología , 24(2): 201-215, ISSN: 0864-151X, http://rcm.insmet.cu/index.php/rcm/article/view/426.
Lay, E. H.; Jacobson, A. R.; Holzworth, R. H.; Rodger, C. J. & Dowden R. L. 2007. “Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network”. J. Geophys. Res ., 112, D13111.
Lolis, C.J. 2007. “Climatic features of atmospheric stability in the Mediterranean region (1948-2006): spatial modes, inter-monthly and inter-annual variability”. Meteorol. Appl, 14: 361-379.
Middey, A. & Kaware, P. B. 2016. “Disposition of Lightning Activity Due to Pollution Load during Dissimilar Seasons as Observed from Satellite and Ground-Based Data”. Climate, 4, 28, DOI:10.3390/cli4020028
Naccarato, K. P.; Pinto Jr., P. & Pinto, I.R.C.A. 2003. “Evidence of thermal and aerosol effects on the cloud-to- ground lightning density and polarity over large urban areas of Southeastern Brazil”. Geophys. Res. Lett. 30 (13).
Orville R. E.; Huffines, G. R.; Burrows, W. R.; Holle, R. L. & Cummins, K. L. 2002. “The North American Lightning Detection Network (NALDN)-First Results: 1998-2000”. Monthly Weather Review, 130: 2098 - 2109.
Pal, J.; Chaudhuri, S.; Chowdhury, A. R. & Bandyopadhyay, T. 2016. “Cloud - Aerosol Interaction during Lightning Activity over Land and Ocean: Precipitation Pattern Assessment”. Asia-Pac. J. Atmos. Sci., 52(3): 251-261, DOI:10.1007/s13143-015-0087-0
Price, C. & Rind, D. 1992. A Simple Lightning Parameterization for Calculating Global Lightning Distributions. NASA Goddard Institute for Space Studies, New York Columbia University, New York.
Price, C. 2000. “Evidence for a link between global lightning activity and upper tropospheric water vapour”. Nature, 406: 290-293.
Price, C. & Asfur, M. 2006. “Can Lightning Observations be Used as an Indicator of Upper-Tropospheric Water Vapor Variability?”. BAMS, 8(3): 291-298, DOI:10.1175/BAMS-87-3-291
Reeve, N. & Toumi, R. 1999. “Lightning activity as an indicator of climate change”. Quart. J. Roy. Met. Soc. , 125: 893-903.
Sneyers, R. 1990. On the statistical analysis of series of observations. Technical Note No. 143, WMO-No. 415, 192 pp.
Valentí Pía, M. D.; De la Torre, L. & Añel, J. A. 2011. “Tendencias en la probabilidad de tormentas en el Suroeste de Europa”. ACT, 2: 97- 104
Villarini, G. & Smith, J. A. 2013. “Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1909 -2010”. Atmos. Res. , 124: 137-148, DOI:10.1016/j.atmosres.2012.12.017.
Virts, K. S.; Wallace, J. M.; Hutchins, M. L. & Holzworth, R. H. 2013. “Highlights of a New Ground-Based , Hourly Global Lightning Climatology”. Bull. Amer. Meteor. Soc., 15: 1381 -1391, DOI:10.1175/BAMS-D-12-00082.1.
Williams, E.R. 2005. “Lightning and climate: A review”. Atmospheric Research, 76: 272-287, DOI: 10.1016/j.atmosres.2004.11.014
WMO. 1988. Manual on codes. WMO - No. 306, Volume 1, Seccion D, Table 4677.
Yuan, T., L.; Remer, A.; Pickering, K. E & Yu H. 2011. “Observational evidence of aerosol enhancement of lightning activity and convective invigoration”. Geophys. Res. Lett. , 38, L04701, doi:10.1029/2010GL046052.
Zhao, P.; Zhou, Y.; Xiao, H.; Liu, J.; Gao, J. & Ge, F. 2017. “Total Lightning Flash Activity Response to Aerosol over China Area”. Atmosphere, 8, 26, DOI:10.3390/atmos8020026

Most read articles by the same author(s)