Study of convective storms in the Peruvian central Andes using PR-TRMM and KuPR-GPM radars

Main Article Content

Elver E. Villalobos
Daniel Martinez-Castro
Shailandra Kumar
Yamina Silva
Octavio Fashe

Abstract

Convective precipitations associated with storms frequently occur in the Central Andes of Peru. To study these events, statistical estimators of three-dimensional reflectivity, rainfall intensity and microphysical parameters were determined using radar information onboard in the TRMM satellites and the GPM core. As a result, it was found that deeper cloud systems occur in the Andes regions than in the Amazon-Andes transition region. Thus, the difference of the vertical average of reflectivity is around 5 dBZ between both regions. The diurnal rainfall cycle is also different, since it rains preferably at the intervals of 13-23 LST and 18-06 LST respectively. The percentages of occurrence of convective and stratiform precipitation in the areas of the Andes are 30% and 70% respectively and their cumulative contributions to rainfall are 63.3% and 36.7% respectively; however, in the Amazon-Andes transition region, the percentages of occurrence are 31% and 69% and their cumulative contributions to rain are equivalent. It is concluded that convective precipitation in the Andes areas is intensified by the orographic forcing mechanism, which strengthens the growth of hydrometeors above the height of the freezing level between 6 and 12 km of height and leads to greater cumulative rainfall.

Downloads

Download data is not yet available.

Article Details

How to Cite
VillalobosE. E., Martinez-CastroD., KumarS., SilvaY., & FasheO. (2019). Study of convective storms in the Peruvian central Andes using PR-TRMM and KuPR-GPM radars. Revista Cubana De Meteorología, 25(1), 59-75. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/454
Section
Original Articles

References

Banta, R. M. (1990) ‘The role of mountain flows in making clouds’, in Atmospheric processes over complex terrain. doi: 10.1007/978-1-935704-25-6.
Berbery, E. H. & Collini, E. A. (2000) ‘Springtime Precipitation and Water Vapor Flux over Southeastern South America’, Monthly Weather Review. doi: 10.1175/1520-0493(2000)128<1328:SPAWVF>2.0.CO;2.
Bhat, G. S. & Kumar, S. (2015) ‘Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season’, Journal of Geophysical Research, 120(5), pp. 1710-1722. doi: 10.1002/2014JD022552.
Bookhagen, B. & Strecker, M. R. (2008) ‘Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes’, Geophysical Research Letters. doi: 10.1029/2007GL032011.
Bringi, V. N. et al. (2003) ‘Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis’, Journal of the Atmospheric Sciences. doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.
Cecil, D. J. et al. (2005) ‘Three Years of TRMM Precipitation Features. Part I: Radar, Radiometric, and Lightning Characteristics’, Monthly Weather Review . doi: 10.1175/MWR-2876.1.
Celleri, R. et al. (2007) ‘Space-time rainfall variability in the Paute basin, Ecuadorian Andes’, Hydrological Processes. doi: 10.1002/hyp.6575.
Chavez, S. P. & Takahashi, K. (2017) ‘Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data’, Journal of Geophysical Research , 122(11), pp. 5870-5882. doi: 10.1002/2016JD026282.
Figueroa, S. N. & Nobre, C. A. (1990) ‘Precipitation distribution over central and western tropical South America’, Climanalise, 5(6), pp. 36-45.
Garreaud, R. (1999) ‘Multiscale Analysis of the Summertime Precipitation over the Central Andes’, Monthly Weather Review . doi: 10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2.
Hou, A. Y. et al. (2014) ‘The global precipitation measurement mission’, Bulletin of the American Meteorological Society, 95(5), pp. 701-722. doi: 10.1175/BAMS-D-13-00164.1.
Houze, R. A. (2014) ‘Cloud microphysics’, International Geophysics. doi: 10.1016/B978-0-12-374266-7.00003-2.
IGUCHI, T. et al. (2009) ‘Uncertainties in the Rain Profiling Algorithm for the TRMM Precipitation Radar’, Journal of the Meteorological Society of Japan, 87A, pp. 1-30. doi: 10.2151/jmsj.87A.1.
Kirstetter, P.-E. et al. (2013) ‘Comparison of TRMM 2A25 Products, Version 6 and Version 7, with NOAA/NSSL Ground Radar-Based National Mosaic QPE’, Journal of Hydrometeorology, 14(2), pp. 661-669. doi: 10.1175/JHM-D-12-030.1.
Kumar, S. (2016) ‘Three dimensional characteristics of precipitating cloud systems observed during Indian summer monsoon’, Advances in Space Research. COSPAR, 58(6), pp. 1017-1032. doi: 10.1016/j.asr.2016.05.052.
Kumar (2017a) Kumar, Shailendra. "A 10-year climatology of vertical properties of most active convective clouds over the Indian regions using TRMM PR." Theoretical and applied climatology 127, no. 1-2 (2017): 429-440. https://doi.org/10.1007/s00704-015-1641-5
Kumar, S. (2017b) ‘Vertical structure of convective clouds using the TRMM PR data’, Environment and Natural Resources Research 7 (2), 58. doi: 10.5539/enrr.v7n2p58
Kumar, S., 2018. Vertical structure of precipitating shallow echoes observed from TRMM during Indian summer monsoon. Theoretical and applied climatology, 133(3-4), pp.1051-1059. https://doi.org/10.1007/s00704-017-2238-y
Kumar, S. & Bhat, G. S. (2016) ‘Vertical profiles of radar reflectivity factor in intense convective clouds in the tropics’, Journal of Applied Meteorology and Climatology, 55(5), pp. 1277-1286. doi: 10.1175/JAMC-D-15-0110.1. doi: 10.1007/s12040-017-0897-9
Kumar, S. and Bhat, G.S., (2017). Vertical structure of orographic precipitating clouds observed over south Asia during summer monsoon season. Journal of Earth System Science, 126(8), p.114.
Liu, C. et al. (2008) ‘A cloud and precipitation feature database from nine years of TRMM observations’, Journal of Applied Meteorology and Climatology, 47(10), pp. 2712-2728. doi: 10.1175/2008JAMC1890.1.
Liu, C. & Zipser, E. J. (2013) ‘Why does radar reflectivity tend to increase downward toward the ocean surface, but decrease downward toward the land surface?’, Journal of Geophysical Research Atmospheres. doi: 10.1029/2012JD018134.
Martinez Grimaldo, A. et al. (2005) ‘Vulnerabilidad actual y futura ante el cambio climático y medidas de adaptación en la Cuenca del rio Mantaro: Volumen III’. Instituto Geofisico del Perú.
Rasmussen, K. L. et al. (2016) ‘Contribution of Extreme Convective Storms to Rainfall in South America’, Journal of Hydrometeorology. doi: 10.1175/JHM-D-15-0067.1.
Romatschke, U. & Houze, R. A. (2010) ‘Extreme summer convection in South America’, Journal of Climate, 23(14), pp. 3761-3791. doi: 10.1175/2010JCLI3465.1.
Saavedra, M. & Takahashi, K. (2017) ‘Physical controls on frost events in the central Andes of Peru using in situ observations and energy flux models’, Agricultural and Forest Meteorology. doi: 10.1016/j.agrformet.2017.02.019.
Saikranthi, K. et al. (2014) ‘Morphology of the vertical structure of precipitation over India and adjoining oceans based on long-term measurements of TRMM PR’, Journal of Geophysical Research: Atmospheres. doi: 10.1002/2014JD021774.
Schumacher, C. & Houze, R. A. (2003) ‘Stratiform rain in the tropics as seen by the TRMM precipitation radar’, Journal of Climate. doi: 10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.
Silva, Y., Takahashi, K. & Chávez, R. (2008) ‘Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes)’, Advances in Geosciences. doi: 10.5194/adgeo-14-261-2008.
Vera, C. et al. (2006) ‘The South American low-level jet experiment’, Bulletin of the American Meteorological Society . doi: 10.1175/BAMS-87-1-63.
Weisman, M. L. & Klemp, J. B. (1984) ‘The Structure and Classification of Numerically Simulated Convective Stormsin Directionally Varying Wind Shears’, Monthly Weather Review . doi: 10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.
Williams, C. R. (2016) ‘Reflectivity and liquid water content vertical decomposition diagrams to diagnose vertical evolution of raindrop size distributions’, Journal of Atmospheric and Oceanic Technology. doi: 10.1175/JTECH-D-15-0208.1.
Xu, W. & Zipser, E. J. (2012) ‘Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes’, Geophysical Research Letters , 39(7), pp. 1-6. doi: 10.1029/2012GL051242.
Zipser, E. J. & Lutz, K. R. (1994) ‘The Vertical Profile of Radar Reflectivity of Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability?’, Monthly Weather Review . doi: 10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.
Zubieta, R. et al. (2017) ‘Spatial analysis & temporal trends of daily precipitation concentration in the mantaro river basin: Central andes of peru’, Stochastic Environmental Research and Risk Assessment. doi: 10.1007/s00477-016-1235-5.

Most read articles by the same author(s)