Análisis de sensibilidad del pronóstico de nubosidad del modelo WRF en la mitad occidental Cuba
Main Article Content
Abstract
modelo WRF-ARW-UPP en la mitad occidental de Cuba. Las corridas se realizaron con
dos períodos de spin-up del modelo diferentes: 6 horas y 12 horas. Se utilizaron cuatro
configuraciones determinadas a partir de las combinaciones de dos esquemas de microfísica
(WSM6 y Thompson) con dos esquemas de parametrización de cúmulos (Grell-Freitas y Kain-
Fritsch). Las salidas del modelo WRF se compararon con las imágenes del canal IR-4 (10,7 μm)
del satélite GOES- 13. Se utilizaron dos métodos de verificación: la comparación punto a punto
y la verificación espacial MODEMod_1.0; con ambos métodos de verificación se obtuvieron
tendencias similares en los valores de las medidas calculadas. Los resultados fueron similares
para los dos períodos de spin-up utilizados; por ello, se recomienda utilizar el más corto (6 h),
lo cual significa un ahorro de tiempo y de cálculo en cada corrida.
Palabras clave: modelo WRF, verificación, nubosidad, esquema de microfísica, esquema de
parametrización de cúmulos, Cuba
Downloads
Article Details
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Lara, F. V.; Ruiz, A. J. A.; Pozo, V. D.; Santos, A. F. J. & Tovar, P. J. 2012b. “Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain)”. Solar Energy, 86(8): 2200–2217, ISSN: 0038-092X, DOI: http://dx.doi.org/10.1016/j.solener.2011.02.014.
Mathiesen, P.; Collier, C.; Parkes, J.; Landberg, L. & Kleissl, J. 2014. “Improved Solar Power Forecasting Using Cloud Assimilation into WRF”. In: LII Annual Conference Australian Solar Energy Society, Melbourne: Australian Solar Council, pp. 703–708, ISBN: 948-0-646-92219-5, Available:
Morcrette, J. J. 1991. “Evaluation of Model-generated Cloudiness: Satellite-observed and Model-generated Diurnal Variability of Brightness Temperature”. Monthly Weather Review, 119(5): 1205–1224, ISSN: 0027-0644, 1520-0493, DOI: 10.1175/1520-0493(1991)119<1205:EOMGCS>2.0.CO;2.
Nielsen, K. P. 2009. “Verification of HIRLAM cloud forecasts with MSG cloud physical products”. In: HIRLAM All Staff Meeting, Netherlands: HIRLAM Newsletter, pp. 11–17, No. 55B, Available:
Otkin, J. A. & Greenwald, T. J. 2008. “Comparison of WRF Model-Simulated and MODIS-Derived Cloud Data”. Monthly Weather Review, 136(6): 1957–1970, ISSN: 0027-0644, 1520-0493, DOI: http://dx.doi.org/10.1175/2007MWR2293.1.
Otkin, J. A.; Greenwald, T. J.; Sieglaff, J. & Huang, H. L. 2009. “Validation of a Large-Scale Simulated Brightness Temperature Dataset Using SEVIRI Satellite Observations”. Journal of Applied Meteorology and Climatology, 48(8): 1613–1626, ISSN: 1558-8424, 1558-8432, DOI: http://dx.doi.org/10.1175/2009JAMC2142.1.
Rincón, A. A. 2013. Sistema de pronóstico de radiación solar a corto plazo a partir de un modelo meteorológico y técnicas de post-proceso para España. Tesis de Doctorado, Barcelona: Universidad Politécnica de Catalunya, 253 p.
Rodríguez, C. 2014. Modificación e implementación del método de evaluación espacial MODEMod para su uso operativo en Cuba. Tesis de Diploma, La Habana, Cuba: INSTECA, 53 p.
Roque, A. 2013. Método de Evaluación Diagnóstico Orientado a Objetos Modificado (MODEMod) utilizando la información de los satélites meteorológicos. Tesis de Diploma, La Habana, Cuba: INSTEC, 56 p.
Shah, S.; Rao, B. M.; Kumar, P. & Pal, P. K. 2010. “Verification of cloud cover forecast with INSAT observation over western India”. Journal of Earth System Science, 119(6): 775–781, ISSN: 0253-4126, 0973-774X, DOI: http://dx.doi.org/10.1007/s12040-010-0062-1.
Söhne, N.; Chaboureau, J. P. & Guichard, F. 2008. “Verification of Cloud Cover Forecast with Satellite Observation over West Africa”. Monthly Weather Review, 136(11): 4421–4434, ISSN: 0027-0644, 1520-0493, DOI: http://dx.doi.org/10.1175/2008MWR2432.1.
Trujillo, G. 2011. Estimación de la cobertura nubosa sobre Cuba a partir de las imágenes del satélite GOESE. Tesis de Diploma, La Habana, Cuba: INSTEC, 55 p.
Wilcoxon, F. 1945. “Individual Comparisons by Ranking Methods”. Biometrics Bulletin, 1(6): 80, ISSN: 0099-4987, DOI: http://dx.doi.org/10.2307/3001968.
Zingerle, C. 2005. “Satellite Data in the Verification of Model Cloud Forecasts: A convective case in summer 2003 seen from NOAA satellites”. Hirlam Newsletter, 48: 173–177.
Zingerle, C. & Nurmi, P. 2008. “Monitoring and verifying cloud forecasts originating from operational numerical models”. Meteorological Applications, 15(3): 325–330, ISSN: 1350-4827, 1469-8080, DOI: http://dx.doi.org/10.1002/met.73.