Estudio de tormentas convectivas sobre los Andes Centrales del Perú usando los radares PR-TRMM y KuPR-GPM

Elver E. Villalobos, Daniel Martinez-Castro, Shailandra Kumar, Yamina Silva, Octavio Fashe

Resumen

Las precipitaciones convectivas asociadas a tormentas ocurren frecuentemente en los Andes Centrales del Perú. Para estudiar estos eventos se determinaron estimadores estadísticos de la reflectividad tri-dimensional, la intensidad de lluvia y parámetros microfísicos usando la información de radares abordo en los satélites del TRMM y el núcleo GPM. Como resultado se encontró que en las regiones de los Andes ocurren sistemas de nubes más profundas que en la región de transición Amazonia-Andes. De tal manera la diferencia del promedio vertical de la reflectividad presenta valores de alrededor de 5 dBZ entre ambas regiones. El ciclo diurno de la lluvia también es diferente, ya que llueve preferentemente en los intervalos 13-23 horas local y 18-06 hora local respectivamente. Los porcentajes de ocurrencia de precipitación convectiva y estratiforme en las áreas de los Andes son 30% y 70% respectivamente y sus contribuciones acumulativas a la lluvia son 63.3% y 36.7% respectivamente; en cambio en la región de transición Amazonia-Andes, los porcentajes de ocurrencia son 31% y 69% y sus contribuciones acumulativas a la lluvia son equivalentes. Se concluye que la precipitación convectiva en las áreas de Andes se intensifica con el mecanismo de forzamiento orográfico, lo que fortalece el crecimiento de los hidrometeoros por encima de la altura del nivel de congelación entre 6 y 12 km de altura y propicia mayores acumulados de lluvia.

Palabras clave

Reflectividad; radar de precipitación; lluvia convectiva y lluvia estratiforme

Texto completo:

HTML PDF XML-JATS EPUB

Referencias

Banta, R. M. (1990) ‘The role of mountain flows in making clouds’, in Atmospheric processes over complex terrain. doi: 10.1007/978-1-935704-25-6.

Berbery, E. H. & Collini, E. A. (2000) ‘Springtime Precipitation and Water Vapor Flux over Southeastern South America’, Monthly Weather Review. doi: 10.1175/1520-0493(2000)128<1328:SPAWVF>2.0.CO;2.

Bhat, G. S. & Kumar, S. (2015) ‘Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season’, Journal of Geophysical Research, 120(5), pp. 1710-1722. doi: 10.1002/2014JD022552.

Bookhagen, B. & Strecker, M. R. (2008) ‘Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes’, Geophysical Research Letters. doi: 10.1029/2007GL032011.

Bringi, V. N. et al. (2003) ‘Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis’, Journal of the Atmospheric Sciences. doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

Cecil, D. J. et al. (2005) ‘Three Years of TRMM Precipitation Features. Part I: Radar, Radiometric, and Lightning Characteristics’, Monthly Weather Review . doi: 10.1175/MWR-2876.1.

Celleri, R. et al. (2007) ‘Space-time rainfall variability in the Paute basin, Ecuadorian Andes’, Hydrological Processes. doi: 10.1002/hyp.6575.

Chavez, S. P. & Takahashi, K. (2017) ‘Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data’, Journal of Geophysical Research , 122(11), pp. 5870-5882. doi: 10.1002/2016JD026282.

Figueroa, S. N. & Nobre, C. A. (1990) ‘Precipitation distribution over central and western tropical South America’, Climanalise, 5(6), pp. 36-45.

Garreaud, R. (1999) ‘Multiscale Analysis of the Summertime Precipitation over the Central Andes’, Monthly Weather Review . doi: 10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2.

Hou, A. Y. et al. (2014) ‘The global precipitation measurement mission’, Bulletin of the American Meteorological Society, 95(5), pp. 701-722. doi: 10.1175/BAMS-D-13-00164.1.

Houze, R. A. (2014) ‘Cloud microphysics’, International Geophysics. doi: 10.1016/B978-0-12-374266-7.00003-2.

IGUCHI, T. et al. (2009) ‘Uncertainties in the Rain Profiling Algorithm for the TRMM Precipitation Radar’, Journal of the Meteorological Society of Japan, 87A, pp. 1-30. doi: 10.2151/jmsj.87A.1.

Kirstetter, P.-E. et al. (2013) ‘Comparison of TRMM 2A25 Products, Version 6 and Version 7, with NOAA/NSSL Ground Radar-Based National Mosaic QPE’, Journal of Hydrometeorology, 14(2), pp. 661-669. doi: 10.1175/JHM-D-12-030.1.

Kumar, S. (2016) ‘Three dimensional characteristics of precipitating cloud systems observed during Indian summer monsoon’, Advances in Space Research. COSPAR, 58(6), pp. 1017-1032. doi: 10.1016/j.asr.2016.05.052.

Kumar (2017a) Kumar, Shailendra. "A 10-year climatology of vertical properties of most active convective clouds over the Indian regions using TRMM PR." Theoretical and applied climatology 127, no. 1-2 (2017): 429-440. https://doi.org/10.1007/s00704-015-1641-5

Kumar, S. (2017b) ‘Vertical structure of convective clouds using the TRMM PR data’, Environment and Natural Resources Research 7 (2), 58. doi: 10.5539/enrr.v7n2p58

Kumar, S., 2018. Vertical structure of precipitating shallow echoes observed from TRMM during Indian summer monsoon. Theoretical and applied climatology, 133(3-4), pp.1051-1059. https://doi.org/10.1007/s00704-017-2238-y

Kumar, S. & Bhat, G. S. (2016) ‘Vertical profiles of radar reflectivity factor in intense convective clouds in the tropics’, Journal of Applied Meteorology and Climatology, 55(5), pp. 1277-1286. doi: 10.1175/JAMC-D-15-0110.1. doi: 10.1007/s12040-017-0897-9

Kumar, S. and Bhat, G.S., (2017). Vertical structure of orographic precipitating clouds observed over south Asia during summer monsoon season. Journal of Earth System Science, 126(8), p.114.

Liu, C. et al. (2008) ‘A cloud and precipitation feature database from nine years of TRMM observations’, Journal of Applied Meteorology and Climatology, 47(10), pp. 2712-2728. doi: 10.1175/2008JAMC1890.1.

Liu, C. & Zipser, E. J. (2013) ‘Why does radar reflectivity tend to increase downward toward the ocean surface, but decrease downward toward the land surface?’, Journal of Geophysical Research Atmospheres. doi: 10.1029/2012JD018134.

Martinez Grimaldo, A. et al. (2005) ‘Vulnerabilidad actual y futura ante el cambio climático y medidas de adaptación en la Cuenca del rio Mantaro: Volumen III’. Instituto Geofisico del Perú.

Rasmussen, K. L. et al. (2016) ‘Contribution of Extreme Convective Storms to Rainfall in South America’, Journal of Hydrometeorology. doi: 10.1175/JHM-D-15-0067.1.

Romatschke, U. & Houze, R. A. (2010) ‘Extreme summer convection in South America’, Journal of Climate, 23(14), pp. 3761-3791. doi: 10.1175/2010JCLI3465.1.

Saavedra, M. & Takahashi, K. (2017) ‘Physical controls on frost events in the central Andes of Peru using in situ observations and energy flux models’, Agricultural and Forest Meteorology. doi: 10.1016/j.agrformet.2017.02.019.

Saikranthi, K. et al. (2014) ‘Morphology of the vertical structure of precipitation over India and adjoining oceans based on long-term measurements of TRMM PR’, Journal of Geophysical Research: Atmospheres. doi: 10.1002/2014JD021774.

Schumacher, C. & Houze, R. A. (2003) ‘Stratiform rain in the tropics as seen by the TRMM precipitation radar’, Journal of Climate. doi: 10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

Silva, Y., Takahashi, K. & Chávez, R. (2008) ‘Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes)’, Advances in Geosciences. doi: 10.5194/adgeo-14-261-2008.

Vera, C. et al. (2006) ‘The South American low-level jet experiment’, Bulletin of the American Meteorological Society . doi: 10.1175/BAMS-87-1-63.

Weisman, M. L. & Klemp, J. B. (1984) ‘The Structure and Classification of Numerically Simulated Convective Stormsin Directionally Varying Wind Shears’, Monthly Weather Review . doi: 10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

Williams, C. R. (2016) ‘Reflectivity and liquid water content vertical decomposition diagrams to diagnose vertical evolution of raindrop size distributions’, Journal of Atmospheric and Oceanic Technology. doi: 10.1175/JTECH-D-15-0208.1.

Xu, W. & Zipser, E. J. (2012) ‘Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes’, Geophysical Research Letters , 39(7), pp. 1-6. doi: 10.1029/2012GL051242.

Zipser, E. J. & Lutz, K. R. (1994) ‘The Vertical Profile of Radar Reflectivity of Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability?’, Monthly Weather Review . doi: 10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

Zubieta, R. et al. (2017) ‘Spatial analysis & temporal trends of daily precipitation concentration in the mantaro river basin: Central andes of peru’, Stochastic Environmental Research and Risk Assessment. doi: 10.1007/s00477-016-1235-5.

Enlaces refback

  • No hay ningún enlace refback.