Dispersión local de contaminantes en la ciudad de Pinar del Río. Modelo Screen3
Contenido principal del artículo
Resumen
En la ciudad de Pinar del Río existe un número importante de fuentes estacionarias de alta y mediana significación, identificadas según la Norma Cubana (NC 39:1999). El objetivo del presente trabajo es analizar la modelación de la dispersión local de contaminantes atmosféricos del dióxido de azufre (SO2), el dióxido de nitrógeno (NO2), el monóxido de carbono (CO) y el material particulado (PM2,5 y PM10), generada por estas fuentes en la zona mencionada, resulta de gran importancia para los estudios de calidad del aire. Para ello, se aplicó como metodología el modelo gaussiano Screen3 y se utilizaron la serie de datos meteorológicos de cinco años (2006-2010) obtenidos del Centro Meteorológico Provincial de Pinar del Río y el inventario de emisiones de 2011; el procesamiento de los gráficos se realizó con el auxilio de Microsoft Excel. Los resultados muestran que los valores de las concentraciones máximas estimadas por el modelo para el NO2 en 1 h y para el SO2 y el NO2 en 24 h superan en varias veces las concentraciones máximas admisibles (Cma), según la NC 39:1999. Se proponen medidas tecnológicas con miras a mitigar la contaminación atmosférica.
Descargas
Detalles del artículo
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes de la Licencia CC Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0):
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.
Bajo las condiciones siguientes:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
La revista no se responsabiliza con las opiniones y conceptos emitidos en los trabajos, son de exclusiva responsabilidad de los autores. El Editor, con la asistencia del Comité de Editorial, se reserva el derecho de sugerir o solicitar modificaciones aconsejables o necesarias. Son aceptados para publicar trabajos científico originales, resultados de investigaciones de interés que no hayan sido publicados ni enviados a otra revista para ese mismo fin.
La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.
Citas
BATCHELOR, G. K. 1959. Some reflections on the theorethical problems raised at the symposium. Advanc. Geophys, 6, 442-449.
BATCHELOR, G. K. 1964. Diffusion from Sources in a Turbulent Boundary Layer, Arch. Merch, Stosowane, 3, 661-670.
BUSTOS, C. 2004. Aplicación de modelos de dispersión atmosférica en la evaluación de impacto ambiental: análisis del proceso. Tesis para optar al grado de magíster en Gestión y Planificación Ambiental.
COLLAZO, A. et al. 2004. Modelación de las transfor¬maciones químicas a escala local del SO2 a sulfato. Resultado del Programa Ramal Científico-Técni¬co Protección del medio ambiente y el desarrollo sostenible cubano. Subprograma Previsión, pre¬vención y mitigación de impactos ambientales de la contaminación atmosférica y sus variables físi¬cas conexas. Proyecto 0030230. 15-80.
COLLAZO, A. 2011. Análisis de la contaminación trans¬fronteriza y local de los compuestos gaseosos precur¬sores de la deposición ácida húmeda y formación de ozono en Cuba, 58-110.
CURIEL, L. D. 1990. Diagnóstico y pronóstico de la con¬taminación por SO2 en la Ciudad de Matanzas. Tesis de doctor en Ciencias Técnicas, I. S. P. de Matan¬zas.
CHASE, R., AQUILANO, N. & JACOBS, R. 2000. Ad¬ministración de producción y operaciones, Madrid, Mc Graw-Hill.
EPA 1992. Screening Procedures for Estimating the Air Quality Impact of Stationary Sources, Revised, EPA-450/R-92-019.
EPA 1995. Screen33 Model User’s Guide, EPA- 454/B-95-004.
FONSECA, Y. 2010. Implementación y aplicación del sistema de modelación Calmet-Calpuff-Calpost a es¬cala local, 32-46.
GIFFORD, F. A. 1962. Diffusion in the adiabatic sur¬face layer, J. Geophys, 67, 3207-3212.
GONZÁLEZ, Y. 2010. Estudio preliminar de la eficiencia y efectividad de los generadores terrestres de yoduro de plata en Cuba, 20-68.
GRANIER, G. P. 2003. Modeling. In The changing at¬mosphere: an integration and synthesis of a de-cade of tropospheric chemistry research, Brasseur et al. (eds.), Springer-Verlag.
HIGASHI, M. & BURNS, T. P. 1991. Enrichment of ecosystem theory, en Higashi M & T. P. Burns (eds.), Theoretical Studies of Ecosystems. The network perspective, London, Cambridge University Press.
KIELY, G. 1999. Ingeniería ambiental. Fundamentos, entornos, tecnologías y sistemas de gestión, Madrid, McGraw-Hill, 1330.
LÓPEZ, C. M. 1984. Factores meteorológicos de la con¬taminación regional del aire en Cuba. Tesis de doct¬orado.
MOLINA, E., et al. 2012. Propuesta de norma: Calidad del aire-contaminantes-concentraciones máxi¬mas admisibles y valores guías en zonas habita¬bles, La Habana, Cuba (inédito).
MONIN, A. S. 1959. The theory of locally isotropic turbulence, Dokl. Akad. Nauk. SSSR, 125, 515-518.
NC: 39 (1999). Requisitos higiénico-sanitarios, CITMA-INN-MEP, La Habana, Cuba.
ONE. 2009. Oficina Nacional de Estadística, Provin¬cia de Pinar del Río.
RODRÍGUEZ, D. 2007. Sistema Automatizado de Gestión de Información sobre Fuentes Contaminantes (SAGIFC). Tesis en opción al grado de máster en Nuevas Tec¬nologías para la Educación, Universidad de Pinar del Río, Cuba.
RODRÍGUEZ, D., ECHEVARRIA, L., SÁNCHEZ, A., CUESTA, O., CARRILLO, E., COLLAZO, A. & VIC¬TORIA, M. 2012. Evaluación de la calidad del aire en la ciudad de Pinar del Río utilizando el modelo Screen. Convención Trópico, ISBN: 978-959’282-079-1.
RODRÍGUEZ, D., ECHEVARRIA, L., CUESTA, O., COLLAZO, A., SÁNCHEZ, A., NUÑEZ, V., MILÓ, M. V. & LIUDMILA, A. 2013. “Inventario de emi¬siones de contaminantes en las fuentes fijas de la zona urbana de Pinar del Río y Santa Lucía”, Re¬vista Cubana de Meteorología, 19.
SÁNCHEZ, P. et al 2004. Impactos de la contami¬nación atmosférica en la salud en el municipio de Habana Vieja. Resultado del Programa Ramal Científico Técnico Protección del medio ambiente y el desarrollo sostenible cubano. Subprograma. Previsión, prevención y mitigación de impactos ambientales de la contaminación atmosférica y sus variables físicas conexas. Proyecto 3114. 13-63.
SEINFELD, J. H. & PANDIS, S. N. 2006. Atmosphe¬ric chemistry and Physics: from Air Pollution Climate Change, John Wiley & Sons, Inc., Hoboken, New Jersey, 1249.
TANJI, K. K. 1994. Hydrochemical modeling, Class No¬tes, Land, Air and Water Resources, University of California at Davis.
TAYLOR, G. I. 1921. Diffusion by Continuous Move¬ments. Proc. London Math. Soc. 20-196.
TURNER, D. B. 1964. A Diffusion Model for an Urban Area, Journal of Applied Meteorology, 3, 83-91.
TURTÓS, L. 2012. Implementación de modelos refina¬dos de dispersión local de contaminantes atmosféricos emitidos por fuentes estacionarias, Tesis en opción al grado de doctor en Ciencias Meteorológicas, INS¬MET, La Habana.