Sistema para el pronóstico numérico de la intensidad y trayectoria de los ciclones tropicales en la cuenca del Atlántico Norte

Contenido principal del artículo

Albenis Pérez-Alarcón
José Carlos Fernández-Alvarez
Oscar Díaz-Rodríguez
Alfo José Batista-Leyva
Ramón Pérez-Suárez

Resumen

Se implementó un sistema para el pronóstico numérico de ciclones tropicales (CTs) llamado Numerical Tools for Hurricane Forecast (NTHF), en el cual se emplean mallas de cómputo móviles. Las simulaciones se extendieron hasta 5 días  y fueron  inicializadas con las salidas de pronóstico del Global Forecast System  (GFS) a las 0000 UTC y la posición de tormenta dada por el National Hurricane  Center (NHC. Para la evaluación del sistema, se utilizaron los ciclones tropicales formados en la cuenca del Atlántico Norte en las temporadas del 2016 al 2018. El error medio en el pronóstico de trayectoria de NTHF varió entre 56 km para las primeras 12 horas y 356 km  para las 120 horas de pronóstico. Sin embargo, la habilidad de NTHF para la predicción de trayectoria no es tan buena como la del NHC, aunque el sistema mostró ser muy hábil para predecir la trayectoria de huracanes intensos. Además, NTHF es útil para el pronóstico de la intensidad de los ciclones tropicales desde depresión hasta huracanes categoría 3 en la escala Saffir-Simpson entre las 36 y 120 horas, mientras que para los huracanes intensos (categorías 4 y 5) los menores errores se encuentran entre 72 y 108 horas de pronóstico, con un error en la velocidad máxima del viento cercano a los 25 kmh-1. Además NTHF es adaptable a bajos recursos computacionales y permitirá el desarrollo de estudios para profundizar en el conocimiento de los mecanismos físicos y dinámicos que controlan los procesos de intensificación y debilitamiento de los CTs.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Pérez-AlarcónA., Fernández-AlvarezJ. C., Díaz-RodríguezO., Batista-LeyvaA. J., & Pérez-SuárezR. (1). Sistema para el pronóstico numérico de la intensidad y trayectoria de los ciclones tropicales en la cuenca del Atlántico Norte. Revista Cubana De Meteorología, 27(1). Recuperado a partir de http://rcm.insmet.cu/index.php/rcm/article/view/552
Sección
Artículos Originales

Citas

Alarcón, A. P.; Díaz, O. R.; Fernández, J.C.A, Pérez, R.S.; Coll, P.H. (2020) A comparison between the atmospheric component of HWRF system and WRF-HWRF model using different horizontal resolutions in Hurricane Irma (2017) simulation. Part I. Revista Brasileña de Meteorología (accepted for publication).
Aligo, E; Ferrier, B.; Thompson, G; Carley, J. R; Rogers, E and Dimego, J. (2017) The New-Ferrier-Aligo Microphysics in the NCEP 3-km NAM nest. In: Proceedings of the 97th AMS Annual Meeting, 21-26 January, Seattle, WA.
Bao, J.-W.; Gopalakrishnan, S. G.; Michelson, S.; Marks, F. and Montgomery, M. (2012) Impact of physics representations in the HWRFX on simulated hurricane structure and pressure-wind relationships. Monthly Weather Review, 140(10): 3278–3299. DOI:10.1175/MWR-D-11-00332.1
Bender, M. A. and Ginis, I. (2000). Real case simulation of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review, 128: 917–946. DOI: 10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2
Bender, M. A.; Ginis, I.; Tuleya, R.; Thomas, B. and Marchok, T. (2007). The operational GFDL Coupled Hurricane-Ocean Prediction System and a summary of its performance. Monthly Weather Review, 135: 3965-3989. DOI: 10.1175/2007MWR2032.1
Biswas, M. K.; Carson, L.; Newman, K.; Bernardet, L.; Kalina,E.; Grell, E. and Frimel, J. (2017) Community HWRF Users’ Guide v3.9a,160 pp.
Bozeman, M. L. (2011) Land surface feedbacks on the post-landfall tropical cyclone characteristics using the Hurricane Weather Research and Forecasting (HWRF) modeling system, Master Degree Thesis, Pursue University, West Lafayette,
Cangialosi, P. J. (2019) National Hurricane Center Forecast Verification Report. 2018 Hurricane Season. National Hurricane Center, https://www.nhc.noaa.Gov/verification/pdfs/Verification_2018.pdf, retrieved June 14, 2019.
Chen, F. and Dudhia, J. (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Monthly Weather Review, 129: 569 –585. DOI: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
Chen, H. and Gopalakrishnan, S. G. (2015) A study on the asymmetric rapid intensification of HurricaneEarl (2010) using the HWRF system. Journal of the Atmospheric Sciences, 72(2): 531–550. DOI: 10.1175/JAS-D-14-0097.1
Cione, J. J. and Uhlhorn, E. W. (2003) Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Monthly Weather Review, 131: 1783–1796. DOI: 10.1175//2562.1
DeMaria, M.; Knaff, J. A. and Kaplan, J. (2006) On the decay of tropical cyclone winds crossing narrow landmasses. Journal of Applied Meteorology, 45: 491–499. DOI: 10.1175/JAM2351.1
Ferrier, B. S.; Jin, Y.; Lin, Y.; Black, T.; Rogers, E. and DiMego, G. (2002) Implementation of a new grid-scale cloud and precipitation scheme in the NCEP ETA model. In: Proceedings of the 19th Conference on weather analysis and forecasting/15th conference on numerical weather prediction. American Meteorological Society.
Gall, R.; Franklin, J.; Marks, F. D.; Rappaport, E. E. and Toepfer, F. (2013) The Hurricane Forecast Improvement Project. Bulletin of the American Meteorological Society, 94: 329–343. DOI: 10.1175/BAMS-D-12-00071.1
Goerss, J. S. (2006) Prediction of tropical cyclone track forecast error for Hurricanes Katrina, Rita,and Wilma. In: Proceedings of the 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, USA, 8: 2447–2469.
Gopalakrishnan, S. G.; Goldenberg, S.; Quirino, T.; Zhang, X.; Marks, F.; Yeh, K.-S.; Atlas, R. and Tallapragada, V. (2012) Toward improving high-resolution numerical hurricane forecasting:Influence of model horizontal grid resolution, initialization, and physics. Weather and Forecasting, 27(3): 647–666. DOI: 10.1175/WAF-D-11-00055.1
Gopalakrishnan, S. G.; Marks, F.; Zhang, J. A.; Zhang, X.; Bao, J.-W. and Tallapragada, V. (2013) A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. Journal of the Atmospheric Sciences, 70(2): 524–541. DOI: 10.1175/JAS-D-11-0340.1
Gopalakrishnan, S. G.; Marks, F.; Zhang, X.; Baoand, J.-W.; Yeh, K.-S. and Atlas R. (2011) The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Monthly Weather Review, 139: 1762–1784. DOI: 10.1175/2010MWR3535.1
Han, J.; Wang, W; Kwon, Y.; Hong, S.; Tallapragada, V. and Yang, F. (2017) Updates in the NCEP GFS Cumulus Convection Schemes with Scale and Aerosol Awareness. Weather and Forecasting, 32(5): 1989-2004. DOI: 10.1175/WAF-D-17-0046.1
Holt, Ch.; Bernardet, L.; Brown, T. and Yablonsky, R. (2014) Community HWRF Users’ Guide V3.6a. NOAA-ESRL-GSD, Developmental Testbed Center and CIRES-CU
Hu, Y. X. and Stamnes, K. (1993) An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. Journal of Climate, 6: 728–742. DOI: 10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2
Iacono, M. J.; Delamere, J. S.; Mlawer, E. J.; Shephard, M. W.; Clough, S. A. and Collins, W. D. (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research,133, D13103. DOI: 10.1029/2008JD009944
Kurihara, Y. and Tuleya, R. E. (1974) Structure of a tropical cyclone developed in a three dimensional numerical simulation model. Journal of the Atmospheric Sciences, 31: 893–919. DOI: 10.1175/1520-0469(1974)031<0893:SOATCD>2.0.CO;2
Landsea, C. W. and Franklin, J. L. (2013) Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. Monthly Weather Review, 141: 3576–3592. DOI: 10.1175/MWR-D-12-00254.1
Marks, F. D. and Shay, L.K. (1998) Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bulletin of the American Meteorological Society, 79: 305–323.
Mesinger, F. (1977) Forward-backward scheme, and its use in a limited area model. Contributions to Atmospheric Physics, 50: 200–210.
May, R.; Arms, S.; Marsh, P.; Bruning, E. and Leeman, J. (2020). Metpy: A Python package for meteorological data. https://doi.org/10.5065/D6WW7G29. (last accessed May 2020)
Misirli, E. and Gurefe, Y. (2011) Multiplicative Adams Bashforth–Moulton methods. Numerical Algorithms, 57: 425–439. DOI: 10.1007/s11075-010-9437-2
Mitrani, A. I.; Pérez, B. A.; Vichot, L. A.; Alonso, D. Y.; González, M. Y. and Díaz, R. O. (2017) Numerical forecast of weather and wind waves, using WRF and WW3, on the Cuban territory and surrounding waters, and comparison with MM5+WW3. Ciencias de la Tierra y el Espacio, 18 (2): 86 – 100.
Mitrani, A. I.; Pérez, B.A.; Cabrales, I. J.; Pérez, P. Y.; Hernández, G. M. and Díaz, R. O. (2019) Coastal flood forecast in Cuba, due to hurricanes, using a combination of numerical models. Revista Cubana de Meteorología, 25(2): 121–138.
Pérez-Alarcón, A. and Fernández-Alvarez, J. C, (2020). Alarconpy: A Python Package for Meteorologists. https://github.com/apalarcon/alarconpy. (last accessed June 2020).
Pérez, B. A.; Díaz, O. O. and Mitrani, I. (2013) Sistema de pronóstico numérico océano–atmósfera para la República de Cuba. In VII Congreso Cubano de Meteorología. Boletín de SOMETCUBA.
Pérez-Bello, A., Mitrani, A. I., Díaz, R. O., Wettre, C., and Robert, L. H. (2019). A numerical prediction system combining ocean, waves and atmosphere models in the Inter-American Seas and Cuba. Revista Cubana de Meteorología, 25 (1): 109–120.
Rogers, E.; Black, T.; Ferrier, B.; Lin, Y.; Parrish, D. and DiMego, G. (2001) Changes to the NCEP meso ETA analysis and forecast system: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NWS Technical Procedures Bulletin 488, NOAA/NWS. https://www.emc.ncep.noaa.gov/mmb/mmpbll/eta12tpb/, retrieved: August 13, 2019.
Sierra, L.M.; Ferrer, H.A.L.; Valdes, R.; Mayor, G.Y.; Cruz, R.C.; Borrajero, I.; Rodrıguez, C.F.; Rodríguez, N. and Roque, A. (2015) Sistema automático de predicción a mesoescala de cuatro ciclos diarios. Informe de Resultado. Instituto de Meteorología. La Habana, Cuba, 65. doi: 10.13140/RG.2.1.2888.1127.
Sirutis, J. J. and Miyakoda, K. (1990) Subgrid scale physics in 1-month forecasts. Part I: Experiment with four parameterization packages. Monthly Weather Review, 118: 1043–1064. DOI: 10.1175/1520-0493(1990)118,1043:SSPIMF.2.0.CO;2.
Smagorinsky, J. (1963) General circulation experiments with the primitive equations. Monthly Weather Review, 91: 99–164. DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
Tallapragada, V.; Bernardet, L.; Biswas, M. K.; Gopalakrishnan, S.; Kwon, Y.; Liu, Q.; Marchok, T.; Sheinin, D.; Tong, M.; Trahan, S.; Tuleya, R.; Yablonsky, R. and Zhang, X. (2014) Hurricane Weather Research and Forecasting (HWRF) Model: Scientific Documentation, 55–56.
Tamsir, M. and Kumar, V. S. (2011) A semi-implicit finite-difference approach for two-dimensional coupled Burges’equations. International Journal of Scientific and Engineering Research, 2(6): 2229-5518.
Zhang, J. A. and Marks, F. D. (2015) Effects of Horizontal Diffusion on Tropical Cyclone Intensity Change and Structure in Idealized Three-Dimensional Numerical Simulations. Monthly Weather Review, 143(10): 3981 – 3995. DOI: 10.1175/MWR-D-14-00341.1