Meteorological analysis and air pollution in distributed power generation scenarios in Santiago de Cuba

Main Article Content

Lisandra Zapata Despaigne
Diamela Beatriz Ávila
Yindra Zulema Salmon Cuspinera
María Teresa Álvarez Balanqué
Yolanda Pardo Riverí
Harol Pineda Burgos

Abstract

Assessing the environmental impact of distributed electricity generation in urban areas is crucial for public health and air quality management. This study aimed to analyze the relationship between meteorological variables and the distribution of emergency generator sets (EGS) to evaluate their environmental impact in Santiago de Cuba. Historical data series (1991–2020) of temperature, relative humidity, wind speed, and precipitation from three meteorological stations were processed using the SAROM system. The provincial electric company's database was analyzed to georeference 872 EGS using QGIS. The results showed a sustained increase in the average annual temperature (up to 1.6 °C) and a trend toward reduced wind speed in urban areas, conditions that limit the dispersion of pollutants. The distribution of EGS was highly uneven, with 55% concentrated in the capital city, and brands such as DENYO predominating. It was concluded that the operation of these groups, in a context of local warming and meteorological conditions that favor atmospheric stability, exacerbates the accumulation of emissions and increases the risk to the respiratory health of the urban population.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zapata DespaigneL., Ávila D. B., Salmon Cuspinera Y. Z., Álvarez Balanqué M. T., Pardo Riverí Y., & Pineda Burgos H. (2025). Meteorological analysis and air pollution in distributed power generation scenarios in Santiago de Cuba. Revista Cubana De Meteorología, 31(4), https://cu-id.com/2377/v31n4e02. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/998
Section
Original Articles

References

Baklanov, A., Grimmond, C. S. B., & Martilli, A. (2014). Atmospheric Urban Boundary Layers and Urban Meteorology. En J. Fernando (Ed.), Handbook of Environmental Fluid Dynamics (1.a ed., pp. 415-438). CRC Press.
Carbonell, L. M. T. (2014). Modelación de la contaminación atmosférica y valoración de impactos epidemiológicos y externalidades, asociadas a instalaciones energéticas e industriales [PhD Thesis]. En Anales de la Academia de Ciencias de Cuba. Academia de Ciencias de Cuba.
Cuesta-Santos, O., Sosa-Pérez, C., & Fonte-Hernández, A. (2015). Impacto de las emisiones industriales en la salud pública en Santiago de Cuba. Revista Ciencias Técnicas Agropecuarias, 24(3), 45-52.
Cuesta-Santos, O., Sosa-Pérez, C., & Fonte-Hernández, A. (2018). Inventario nacional de emisiones atmosféricas de las principales fuentes fijas. Revista Cubana de Meteorología, 24(2), 178-190.
Cuesta-Santos, O., Sosa-Pérez, C., Iraola-Ramírez, C., & González-Jaime, Y. (2014). Evaluación de la calidad del aire en zonas urbanas de Santiago de Cuba [Technical Report]. Instituto de Meteorología, Cuba.
Hourné-Calzada, M. B., Brito-Vallina, M. L., del Castillo-Serpa, A. M., Fraga-Guerra, E., & Díaz-Concepción, A. (2012). Análisis de criticidad de grupos electrógenos de la tecnología fuel oil en Cuba. Revista Ciencias Técnicas Agropecuarias, 21(3), 55-61.
IPCC. (2021). Climate Change 2021: The Physical Science Basis (Intergovernmental Panel on Climate Change). Cambridge University Press.
Marrero Díaz, Y., Cruz Estopiñán, E. B., & Reyes Mesa, A. (2020). Evaluación de las emisiones atmosféricas provenientes de grupos electrógenos en la provincia de Holguín, Cuba. Revista Cubana de Meteorología, 26(4).
PNUMA. (2004). Evaluación ambiental de Santiago de Cuba (Programa de las Naciones Unidas para el Medio Ambiente) [Report]. PNUMA.
PNUMA. (2009). Informe de seguimiento ambiental en Santiago de Cuba (Programa de las Naciones Unidas para el Medio Ambiente) [Report]. PNUMA.
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (3.a ed.). Wiley.
UNEP. (2019). Air Pollution in Asia and the Pacific: Science-based Solutions. United Nations Environment Programme.
Varona, M., Arocha, A., Esquivel, E., & Roche, R. (2007). Grupos electrógenos y su impacto ambiental. Higiene y Sanidad Ambiental, 9(7), 217-221.
WHO. (2021). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization.

Most read articles by the same author(s)