Characterization of Lightning in the Vicinity of Benito Juárez International Airport, Mexico (2018–2023)

Main Article Content

Lemay Entenza Tilman
José Francisco León-Cruz
Naxhelli Ruiz Rivera
Uriel de Jesús Mendoza Castillo

Abstract

The vulnerability of Mexico City's airspace to lightning activity is increasing due to the higher frequency and intensity of convective storms. Lightning represents a significant risk to the safety of the population and economic activities. Among its impacts are power outages, which affect the reliability and performance of airport facilities if they are not adequately protected. In this study, a characterization of lightning activity at Mexico City International Airport (Benito Juárez International Airport) was carried out for the period 2018-2023, evaluating its spatial and temporal distribution. This provided the basis for monitoring during flight phases in proximity to the aerodrome. To this end, cartographic representation was used for two flight phases and the airport facility, employing the non-parametric "Kernel Density Estimation" method. The generated characterization, in relation to spatial proximity, allowed for the analysis of the characteristics of this threat and its direct and indirect consequences. The results show that lightning activity varies according to the geographic area of the proximity flight phases, indicating that the operational context is not the same and requires monitoring, in compliance with one of the operational requirements of the International Civil Aviation Organization (ICAO).

Downloads

Download data is not yet available.

Article Details

How to Cite
Entenza TilmanL., León-CruzJ. F., Ruiz RiveraN., & Mendoza CastilloU. de J. (2025). Characterization of Lightning in the Vicinity of Benito Juárez International Airport, Mexico (2018–2023). Revista Cubana De Meteorología, 31(3). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/969
Section
Original Articles

References

Battan, J.L., (1965). Some Factors Governing Precipitation and Lightning from
Convective Clouds. J. Atmos. Sci., 22, pp. 79-84.
Betz, H. D., Schumann, U., & Laroche, P. (2009). Lightning: Principles, instruments and applications: Review of modern lightning research. Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research, 1–641. https://doi.org/10.1007/978-1-4020-9079-0
Entenza-Tilman, L., León-Cruz, J.F., Ruiz-Rivera, N. (2024). Análisis de las fuertes tormentas eléctricas en el Aeropuerto Internacional de la Ciudad de México y su vecindad (1990-2022). Tlamati Sabiduría, 18, 54-68.
Goodman, S., Nesdis, N., Koshak, W., & Blakeslee, R. (2012). GLM Lightning Cluster-Filter Algorithm. 0–72. http://www.star.nesdis.noaa.gov/goesr/docs/ATBD/LCFA.pdf
Graves, C. M., He, Y., Lindbergh, S., & Rakas, J. (2019). Characterizing lightning-strike hazard to airport facilities: A case study of Baltimore Washington international airport. Integrated Communications, Navigation and Surveillance Conference, ICNS, 2019-April, 1–9. https://doi.org/10.1109/ICNSURV.2019.8735304
Hatakeyama, H., 1958. The distribution of the sudden change of electric field on the
earth's surface due to lightning discharge. In Recent Advances in Atmospheric
Electricity, L.G. Smith, ed., Pergamon, New York, pp. 289-298.
He, Y., Lindbergh, S., Graves, C., & Rakas, J. (2021). Airport Exposure to Lightning Strike Hazard in the Contiguous United States. Risk Analysis, 41(8), 1323–1344. https://doi.org/10.1111/risa.13630
Jaramillo, A., and C. Dominguez, 2024: Mapping Lightning Risk in Mexico: Integrating Natural Hazard and Social Vulnerability. Wea. Climate Soc., 16, 563–574, https://doi.org/10.1175/WCAS-D-23-0151.1
Jarayatne E.R., C.P. Saunders, 1984. The “rain gush”, lightning and the lower positive charge center in thunderstorms. J.Geophys. Res. Vol 89, No.D7, 11816-11818.
Jarayatne E.R., 1998. Possible Laboratory evidence for multipole electric charge structures in thunderstorms. Journal of Geophysical Research. Vol 103, Nº D21, 1871- 1878.
Jáuregui Ostos, Ernesto. (1995). Algunas alteraciones de largo periodo del clima de la Ciudad de México debidas a la urbanización: Revisión y perspectivas. Investigaciones geográficas, (31), 09-44. Recuperado en 04 de octubre de 2024, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-46111995000200001&lng=es&tlng=es.
Jauregui, O. E (2000). El clima de la Ciudad de México. Primera Edición. Junio 2000. Instituto de Geografía. Plaza y Valdez S.A de C.V. ISBN UNAM 968-36-8171-9.Ç
Kuettner, J., 1950. The Electrical and Meteorological Conditions inside Thunderstorms.
J. Meteor., 7, pp. 322-332.
Laboratorio Nacional de Observación de la Tierra (LANOT). (2018). Laboratorio Nacional de Observación de la Tierra. Universidad Nacional Autónoma de México. https://www.lanot.unam.mx/
Larena, I. (2022). Dinámica espacio-temporal de la isla de calor urbana en la Ciudad de México. Urbe. Arquitectura, Ciudad y Territorio, 15, 3–18. https://doi.org/10.29393/ur15-1deil10001
León‐Cruz, J.F., Caetano, E., Cortés‐Ramos, J.,Dominguez, C., Méndez‐Pérez, J.M. (2023).Thunderstorm and hailstorm environments in Mexico. International Journal of Climatology, 43, 4379-4395. https://doi.org/10.1002/joc.8093
Maduranga, D., & Edirisinghe, M. (2021). Climatology of Lightning Activities over Bandaranaike International Airport in Sri Lanka. International Journal of Sustainable Development and Planning, 16(6), 1027–1038. https://doi.org/10.18280/ijsdp.160604
Moore P.K., R.E. Orville, 1990. Lightning characteristics in lake-effect thunderstorms. Monthly Weather Review. 118(9), 1767-1782.
Nicora, M. G., Bali, J. L., Conicet, C., Vasquez, P. M., Elia, R. D., Conicet, C., & Acquesta, A. (2017). AeroRayos First Tool for Risk Assessment by Electric Activity at A irports in Argentina. October, 141–144.
NOOA-NASA. (2018). Geostationary Lightning Mapper : Definitions and Detection Methods Quick Guide Geostationary Lightning Mapper : Definitions and Detection Methods Quick Guide.
International Civil Aviation Organization ICAO. (2009). Annex 4 to the Convention on International Civil Aviation: Aeronautical charts. International standards and recommended practices. (International Civil Aviation Organization ICAO (ed.); No. 57.). Published separately in English, Arabic, Chinese, French, Russian and Spanish, by the International Civil Aviation Organization 999 University Street, Montréal, Quebec, Canada H3C 5H7.
Organización Mundial de la Aviación Civil (OACI, 2016) Anexo 3: Servicio meteorológico para la navegación aérea internacional. Decimonovena edición. Núm. de pedido: AN 3. ISBN 978-92-9249-992-1
Secretaria de Gorbenación (SEGOB) (2023). Resolución por la que se declara la saturación del Aeropuerto Internacional "Benito Juárez" de la Ciudad de México DOF: 31/08/2023. Secretaría de Infraestructura, Comunicaciones y Transportes.- Agencia Federal de Aviación Civil.- Dirección General.- 4.1.2157.- Expediente: DEC/AICM/2023/AFAC. https://www.dof.gob.mx/nota_detalle.php?codigo=5700389&fecha=31/08/2023#gsc.tab=0. consultado 23 de agosto.
Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM) (2019). Manual del Meteorólogo observador. Dirección de Meteorología y Telecomunicaciones Aeronáuticas. Vigencia: junio de 2013. Actualización: septiembre del 2016.
Servicios a la Navegación en el Espacio Aéreo Mexicano, 2021. Manual de Publicación de Información Aeronáutica (AIP). AD 2-1 MMMX 25-MAR-2021
Solazzo, E., Tournigand, P. Y., Barindelli, S., Guglieri, V., Realini, E., Nisi, L., & Biondi, R. (2020). Understanding Severe Weather Events at Airport Spatial Scale. International Geoscience and Remote Sensing Symposium (IGARSS), 1, 5372–5375. https://doi.org/10.1109/IGARSS39084.2020.9323598
Steiger, S. M., R. E. Orville y G. Huffines, 2002. Cloud-to-ground lightning
characteristics over Houston, Texas: 1989–2000, J. Geophys. Res., 107(D11),
10.1029/2001JD001142.
Universidad del Estado de Iowa https://mesonet.agron.iastate.edu/request/download.phtml. consultado 10 de enero 2024
Vidal-Zepeda, R. (2007). Amenazas climáticas,Nuevo Atlas Nacional de México. Ciudad de México: Instituto de Geografía, UNAM. Instituto de Geografía - UNAM
Weber, M., Williams, E., Wolfson, M., & Goodman, S. (2013). An Assessment of the Operational Utility. February 1998.
World Meteorological Organization (WMO), (2014). Guide to meteorological systems for observation and distribution of information for aeronautical meteorological services. ISBN 978-92-63-30731-6 http://www.wmo.int/pages/prog/lsp/meteoterm_wmo_es.html.