Frecuency factor Kt estimation for the incomplete gamma probability distribution

Main Article Content

Lorenzo Armando Aceves Navarro
Benigno Rivera Hernández
José Francisco Juárez López
Agrícola Arrieta Rivera

Abstract

In the present paper, a procedure is presented to obtain the value of the frequency factor for the Incomplete Gamma Probability Distribution Function from their ​​shape (α) and scale (β) parameters. Using regression analysis, the rainfall data resulting from applying the model of the reduced variable were compared with those obtained with the Incomplete Gamma Function. Data from 53 years of total monthly rainfall from the meteorological station 27039 Samaria, Cunduacán, Tabasco were used to adjust and calibrate the values ​​of the frequency factor KT. Likewise, the values ​​of total monthly rainfall from five meteorological stations from various rainfed regions of Mexico were selected, with records ranging from 31 to 59 years. Data from the meteorological stations of Motul de Felipe Carrillo Puerto, Yucatán; Texcoco, State of Mexico; Suchiate, Chiapas; Zapopan, Jalisco; and Acaponeta, Nayarit to validate the resulting values ​​of the KT frequency factor. The Pearson correlation coefficient in the adjustment, calibration, and validation processes was higher than 0.997. Thus, the resulting KT values ​​had a very good fit and are reliable for calculating the probability of exceeding the total monthly rainfall for an Incomplete Gamma Function.

Downloads

Download data is not yet available.

Article Details

How to Cite
Aceves NavarroL. A., Rivera HernándezB., Juárez LópezJ. F., & Arrieta RiveraA. (2025). Frecuency factor Kt estimation for the incomplete gamma probability distribution. Revista Cubana De Meteorología, 31(2), https://cu-id.com/2377/v31n2e06. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/955
Section
Original Articles

References

Arroyo, I.; Bravo, L. C.; Llinás, H. & Muñoz, F. L. 2014. “Poisson and gamma distributions: A discrete and continuous relation”. Prospectiva, 12(1): 99-107. https://doi.org/10.15665/rp.v12i1.156.
Bokke, A. S. & Shoro, K. E. 2020. “Impact of effective rainfall on net irrigation water requirement: The case of Ethiopia”. Water Science, 34(1): 155-163. https://doi.org/10.1080/11104929.2020.1749780.
Chow, V. T. 1951. “A general formula for hydrologic frequency analysis”. Eos, Transactions American Geophysical Union, 32(2): 231-237. https://doi.org/10.1029/TR032i002p00231.
Evin, G.; Merleau, J. & Perreault, L. 2011. “Two‐component mixtures of normal, gamma, and gumbel distributions for hydrological applications”. Water Resources Research, 47(8): W08525. https://doi.org/10.1029/2010WR010266.
Hargreaves, G. H. & Jensen, D. T. 2002. Simplification of planning to meet future demands for food and water. Energy: Climate, Environment and Water-Issues and Opportunities for Irrigation and Drainage, 513. Disponible: https://hdl.handle.net/10217/206923. [Consultado: Enero 11, 2024].
Husak, G. J.; Michaelsen, J. & Funk, C. 2007. “Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications”. International Journal of Climatology, 27(7): 935-944. https://doi.org/10.1002/joc.1441.
IMTA (Instituto Mexicano de Tecnología del Agua). 2009. ERIC III: Extractor Rápido de Información Climatológica v.2. CD, p. 28.
Jadhav, M. G.; Aher, H. V.; Jadhav, A. S. & Gote, G. N. 2015. “Crop Planning Based on Moisture Adequacy Index (MAI) of Different Talukas of Aurangabad District of Maharashtra”. Indian J. Dryland Agric. Res. & Dev, 30(1): 101-103. https://doi.org/10.5958/2231-6701.2015.00016.0.
Johnson, R. A., Miller, I., & Freund, J. E. 2018. Ninth Ed. Probability and statistics for engineers. Pearson Education Ltd.
Kite, G. W. 1977. Frequency and risk analyses in hydrology (Chapter 9, pp. 105-122 and chapter 12, 156-168). Fort Collins, USA: Water Resources Publications. https://es.scribd.com/document/487410158/Frequency-and-Risk-Analyses-in-Hidrology-G-W-Kite.
Laux, P.; Wagner, S.; Wagner, A.; Jacobeit, J.; Bárdossy, A. & Kunstmann, H. 2009. “Modelling daily precipitation features in the Volta Basin of West Africa”. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(7): 937-954. https://doi.org/10.1002/joc.1852.
Machado-Fernández, J. R. 2016. Modelación de la Distribución Gamma en MATLAB para Aplicaciones de Radar. Ciencias Holguín, 22(4), 1-17. https://www.redalyc.org/pdf/1815/181548029005.pdf.
Nkegbe, P. K. & Shankar, B. 2014. “Adoption intensity of soil and water conservation practices by smallholders: evidence from Northern Ghana”. Bio-based and Applied Economics, 3(2): 159-174. https://doi.org/10.13128/BAE-13246.
Sahu, T.; Chaudhary, J. L. & Sahu, K. K. 2022. “Analysis of Rainfall Probabilities and Crop Planning for Different Districts of Chhattisgarh”. International Journal of Environment and Climate Change, 12(10): 858-862. https://doi.org/10.9734/ijecc/2022/v12i1030873.
Sharma, M. A. & Singh, J. B. 2010. “Use of probability distribution in rainfall analysis”. New York Science Journal, 3(9): 40-49. https://www.sciencepub.net/newyork/ny0309/07_3294ny0309_40_49_02.pdf.
Stöckle, C. O., J. Kjelgaard, and G. Bellocchi (2004), Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration, Irrig. Sci., 1, 39–46. https://doi.org/10.1007/s00271-004-0091-0
Vergni, L.; Todisco, F.; Di Lena, B., & Mannocchi, F. 2020. “Bivariate analysis of drought duration and severity for irrigation planning”. Agricultural Water Management, 229, 105926. https://doi.org/10.1016/j.agwat.2019.105926.
Wilks, D. S. 2006. Statistical methods in the atmospheric sciences. Second Edition. International Geophysics Series, Vol. 91. Academic press. 649 p. Disponible . [Consultado: Febrero 4, 2024].