Analysis of the hydrological response of the Limoncocha lagoon to global climatic trends
Main Article Content
Abstract
The research addresses the effects of climate change on the Limoncocha lagoon, located in the Ecuadorian Amazon, between 2013 and 2024. Using a mixed methodology, Landsat satellite images processed with QGIS 3.34.9 were analyzed and spectral indices were used to evaluate changes in the water mirror. In addition, the ARIMA econometric model was used to project future trends. The results identified critical fluctuations in 2017 (163.2 ha) and 2021 (132.0 ha), linked to regional climatic variations. ARIMA estimated an average area of 196,662.9 ha for the next five years, albeit with significant uncertainty. This evidence highlights the vulnerability of the ecosystem to global warming. It is imperative to implement adaptive monitoring and conservation strategies to mitigate impacts and ensure the sustainability of this tropical ecosystem, which is essential for the region's biodiversity.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Bolaños , S., Betancur, T., Salazar , J., & Werner, M. (2023). Considerations on the water supply of the aquifer-wetland systems in Colombia from the GRACE satellites data interpretation. Revista de Ciencias Ambientales, 57(1), 97 - 120. https://doi.org/http://dx.doi.org/10.15359/rca.57-1.6
Brito , A., Newton, A., Tett , P., & Fernándes , T. (2012). How will shallow coastal lagoons respond to climate change? A modelling investigation. Estuarine, Coastal and Shelf Science, 112, 98 - 104. https://doi.org/https://doi.org/10.1016/j.ecss.2011.09.002
Coral , K. (2023). Evaluación de la contaminación y del riesgo ecológico potencial de metales y As en sedimentos y suelos de la Reserva Biológica de Limoncocha, Amazonia Ecuatoriana. UCrea. https://repositorio.unican.es/xmlui/handle/10902/30158
Doorga, J., Pasnín, O., Dindoyal, Y., & Díaz , C. (2023). Risk assessment of coral reef vulnerability to climate change and stressors in tropical islands: The case of Mauritius. Science of The Total Environment, 891. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.164648
Ferreli, F., Brendel, A., & Piccolo, C. (2020). Evaluación de eventos secos y húmedos en el contexto del cambio climático: El caso del sur de la región Pampeana (Argentina). Papeles de Geografía(66), 27 - 46. https://doi.org/https://doi.org/10.6018/geografia.431671
Hernández, R., Fernández , C., & Baptista , P. (2017). Metodología de la investigación. Mexico D.F: Mc Graw Hill Education. https://www.uca.ac.cr/wp-content/uploads/2017/10/Investigacion.pdf
Jácome , E., Vallejo , B., & Gómez de la Torre, M. (2019). Impacts of climate change on the aquatic flora of Lagunas Verdes, Chiles Volcano, Ecuador. Biota Colombiana, 20(2), 20 - 31. https://doi.org/https://doi.org/10.21068/c2019.v20n02a02
Jarrín , A., Salazar , J., & artínez , M. (2017). Evaluación del riesgo a la contaminación de los acuíferos de la Reserva Biológica de Limoncocha, Amazonía Ecuatoriana. Ambiente & Agua - An Interdisciplinary, 12(4), 652-665. https://www.redalyc.org/articulo.oa?id=92851634011
Mejía, V. (2020). Morfología urbana y proceso de urbanización en Ecuador a través de la imagen satelital nocturna de la Tierra, 1992-2012. EURE, 46(138), 190 - 213. chrome-extension://mhnlakgilnojmhinhkckjpncpbhabphi/pages/pdf/web/viewer.html?file=https%3A%2F%2Fwww.redalyc.org%2Fjournal%2F196%2F19662963013%2F19662963013.pdf
Mosquera , M. (2014). Desarrollo de un modelo de balance hídrico de la laguna de Limoncocha. Universidad Internacional SEK, Quito - Ecuador . https://repositorio.uisek.edu.ec/bitstream/123456789/1004/1/Anabell%20Mosquera%20Andrade%20TESIS%20DE%20GRADO.pdf
Muñoz, W., Bedoya , O., & Rincón , M. (2020). Aplicación de rees neuronales para la reconstrucción de series de tiempo de precipitación y temperatura utilizando información satelital. Revista EIA, 17(34), 1 - 20. https://doi.org/DOI: https://doi.org/10.24050/reia.v17i34.1292
Murad, C., Pearse, J., & Hogot, C. (2024). Monitoreo multitemporal de páramos como fuentes críticas de agua en el centro de Colombia. Scientific reports, 1(743). https://doi.org/10.1038/s41598-024-67563-z
Pech, F., Sánchez , J., Sánchez , H., & Magaña, J. (2020). Análisis de zonas de cultivo y cuerpos de agua mediante el cálculo de índices radiométricos con imágenes Sentinel-2. Lamprakos(24), 48-59. https://doi.org/DOI: https://doi.org/10.21501/21454086.3601
Reyes , A. D., & Baxter, R. (2024). Evaluación de la resiliencia y los efectos a largo plazo del cambio climático en la superficie del Lago de Yojoa. Medio ambiente sostennible . https://doi.org/10.1080/27658511.2024.2385734
Reyes, V., Vieira da Cunha, J., & Caviedes, J. (2022). Impacto del cambio climático en lagunas tropicales: un estudio de caso en la Amazonía. Antropologías del sur. https://doi.org/http://dx.doi.org/10.25074/rantros.v9i17.2317
Secretaría de Gestión de Riesgos. (2017). Informe de la situación lluviosa en el Ecuador. Quito Ecuador. https://www.gestionderiesgos.gob.ec/wp-content/uploads/downloads/2017/03/InformeSituacion_EpocaLluviosa_23012017_11h30.pdf
Vargas , W., Castrejón, M., & Hinojosa , R. (2021). Machine Learning as a Tool to Determine the Variation of Water Resources Water Resources. Scientific Research Journal, 1(1), 56 - 69. https://doi.org/https://doi.org/10.53942/srjcidi.v1i1.46
Wolfgang, J., Shuqing , A., Finlayson, C., Brij , G., Květ, J., & . Mitchell,, S. (2013). Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences, 75, 151 - 167. https://link.springer.com/article/10.1007/s00027-012-0278-z
Woolway, L., Kraemer, B., Lenters, J., & Merchant, C. (2020). Global lake responses to climate change. Nature reviews earth & environment, 1, 388–403. https://doi.org/https://doi.org/10.1038/s43017-020-0067-5
Zhichao , L., Yujie , F., Nadine , D., Delaitre, E., Gurgel, H., & Gong, P. (2019). Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex. Remote Sensing, 11(12). https://doi.org/https://doi.org/10.3390/rs11121425
Zhong, G., Yoo, T., Xie, H., & Yang, K. (2020). Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 208. https://doi.org/https://doi.org/10.1016/j.earscirev.2020.103269