Rainfall prediction for the rainy season in Cuba

Main Article Content

Julio Enrique Rojas Cantero
Beatriz Bello García
Aldo Saturnino Moya Álvarez

Abstract

Rainfall forecasts are of great importance to prevent disasters, economic losses in crops and several important aspects for the country's hydroeconomy, hence the need to develop rainfall prediction models. At the Villa Clara Provincial Meteorological Center (CMPVC), mathematical models with a high level of accuracy are used, but they require a lot of processing time. Hence, the need to look for more current and accurate, ways to make accurate rainfall forecasts but in a faster way. The progress of artificial intelligence and especially artificial neural networks have allowed the development of models to solve the problem of rainfall prediction; using the metrics provided by the World Meteorological Organization (WMO) from 1975 to 2016. In this work, an analysis of the different regression models with multiple outputs to predict rainfall is carry out in the months of May, June, July and August. The regression models that best fit this problem were linear regression, regression tree, k-nearest neighbors, direct regression, chained regression and multilayer perceptron. After running the models, the multilayer perceptron was the regression model with the best results, with a high degree of efficiency for rainfall forecasting.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rojas CanteroJ. E., Bello GarcíaB., & Moya ÁlvarezA. S. (2024). Rainfall prediction for the rainy season in Cuba. Revista Cubana De Meteorología, 30(2), https://cu-id.com/2377/v30n2e02. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/867
Section
Original Articles

References

Ahmed, M. I., -, N., Mahbub-Or-Rashid, Md., y Islam, F. (2023). Prediction of Death Counts Based on Short-term Mortality Fluctuations Data Series using Multi-output Regression Models. International Journal of Advanced Computer Science and Applications, 14(5), Article 5. https://doi.org/10.14569/IJACSA.2023.01405120
Ahmed, S. M. S., y Guneyli, H. (2023). Robust Multi-Output Machine Learning Regression for Seismic Hazard Model Using Peak Crust Acceleration Case Study, Turkey, Iraq and Iran. Journal of Earth Science, 34(5), Article 5. https://doi.org/10.1007/s12583-022-1616-2
Bonaccorso, G. (2020). Mastering machine learning algorithms: Expert techniques for implementing popular machine learning algorithms, fine-tuning your models, and understanding how they work (Segunda edición). PACKT.
Brownlee, J. (18 de Agosto de 2020). Machine Learning Mastery. Recuperado el 18 de Diciembre de 2023, de How to Perform Feature Selection for Regression Data: https://machinelearningmastery.com/feature-selection-for-regression-data/
Brownlee, J. (26 de Agosto de 2020). Machine Learning Mastery. Recuperado el 23 de Diciembre de 2023, de LOOCV for Evaluating Machine Learning Algorithms: https://machinelearningmastery.com/loocv-for-evaluating-machine-learning-algorithms/
Brownlee, J. (27 de Abril de 2021). Machine Learning Mastery. Recuperado el 18 de Diciembre de 2023, de How to Develop Multi-Output Regression Models with Python: https://machinelearningmastery.com/multi-output-regression-models-with-python/
Corona, J. C., Diez, H. R. G., y Morell, C. (2020). Un estudio empírico del modelo de red neuronal MLP para problemas de predicción con salidas múltiples. (6). 13(6), Article 6.
Cunningham, P., Kathirgamanathan, B., y Delany, S. J. (2021). Feature Selection Tutorial with Python Examples (arXiv:2106.06437; Número arXiv:2106.06437). arXiv. http://arxiv.org/abs/2106.06437
Finlay, S. (2020). Artificial Intelligence for Everyone. Relativistic.
Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow.
González, H. R., Morell, C., y Blanco, A. (2016). Regresión lineal local con reducción de rango para problemas de predicción con salidas compuestas (4). 10(4), Article 4.
Jiménez, P. M. E., López, P. J. N., y Avilés, R. R. (2020). Aplicación de la regresión de múltiples objetivos en la estimación de componentes fitoquímicos.
Kigo, S. N., Omondi, E. O., y Omolo, B. O. (2023). Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-44326-w
Michalski, R. S., Carbonell, J. G., y Mitchell, T. M. (2013). Machine Learning: An Artificial Intelligence Approach. Springer Science y Business Media.
Mu, A. C. (2016). Introduction to Machine Learning with Python.
Muñoz Herrera, W., Bedoya, O. F., y Rincón, M. E. (2020). Aplicación de redes neuronales para la reconstrucción de series de tiempo de precipitación y temperatura utilizando información satelital. Revista EIA, 17(34), Article 34. https://doi.org/10.24050/reia.v17i34.1292
Nair, J. P., y Vijaya, M. S. (2022). River Water Quality Prediction and index classification using Machine Learning. Journal of Physics: Conference Series, 2325(1), Article 1. https://doi.org/10.1088/1742-6596/2325/1/012011
Negnevitsky, M. (2005). Artificial intelligence: A guide to intelligent systems (Segunda edición). Addison-Wesley.
Pardo Navarro, F. (2018). Aplicación del modelo de regresión múltiple para la interpolación de las temperaturas y precipitaciones de la península ibérica y las Islas Baleares. Estudios Geográficos, 78(283), Article 283. https://doi.org/10.3989/estgeogr.201717
Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., y O’Sullivan, J. M. (2022). A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Frontiers in Bioinformatics, 2, 927312. https://doi.org/10.3389/fbinf.2022.927312
Roque Rodríguez, J. C. (2015). Pronóstico de temperaturas mínimas en todas las estaciones meteorológicas cubanas utilizando redes neuronales artificiales. Universidad Central "Marta Abreu" de Las Villas, Facultad de Matemática, Física y Computación. Santa Clara: Universidad Central “Marta Abreu” de Las Villas.
Singh Kushwah, J., Kumar, A., Patel, S., Soni, R., Gawande, A., y Gupta, S. (2022). Comparative study of regressor and classifier with decision tree using modern tools. Materials Today: Proceedings, 56, 3571-3576. https://doi.org/10.1016/j.matpr.2021.11.635
Starbuck, C. (2023). Linear Regression. En C. Starbuck, The Fundamentals of People Analytics (pp. 181-206). Springer International Publishing. https://doi.org/10.1007/978-3-031-28674-2_10
Tkatek, S., Amassmir, S., Belmzoukia, A., y Abouchabaka, J. (2023). Predictive fertilization models for potato crops using machine learning techniques in Moroccan Gharb region. International Journal of Electrical and Computer Engineering (IJECE), 13(5), Article 5. https://doi.org/10.11591/ijece.v13i5.pp5942-5950
Unpingco, J. (2016). Python for Probability, Statistics, and Machine Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-30717-6
Mahesh R N, U., y Nelleri, A. (2023). Multi-Class Classification and Multi-Output Regression of Three-Dimensional Objects Using Artificial Intelligence Applied to Digital Holographic Information. Sensors, 23(3), Art. 3. https://doi.org/10.3390/s23031095
García, J. (14 de Enero de 2020). Xataca. Recuperado el 18 de Diciembre de 2023, de Google desarrolla una inteligencia artificial capaz de predecir las lluvias de las próximas seis horas en menos de 10 minutos: https://www.xataka.com/inteligencia-artificial/google-desarrolla-inteligencia-artificial-capaz-predecir-lluvias-proximas-seis-horas-10-minutos