Influence of atmospheric and oceanic indexes on interannual precipitation in San Ramon, Costa Rica

Main Article Content

Marvin E. Quesada

Abstract

The interannual climatic variability of precipitation in San Ramón (El Estero stream micro-basin) and its relationship with indexes of the ONI (Oceanic Niño Index), MEIv2 (Multivariate ENSO Index, version 2). CLLJ (Caribbean Low Level Jet Index), the NAO (North Atlantic Oscillation Index), and the SOI (Southern Oscillation Index). To calculate the interannual variation of precipitation, the mathematical analysis program Geogebra in its version 4 and the interquartile range (IQR) were used. Confidence intervals were established to observe the different intensities of ENSO, and precipitation was correlated with the different oceanic-atmospheric indices, showing a negative relationship in four of them and a positive relationship in only one. The NAO index shows a very low regression. With the ONI, the relationship with ENSO episodes was established, showing some relationship during La Niña (cold phase), producing above-average rainfall in the area under study. While during the El Niño event (warm phase) there have been decreases in precipitation.

Downloads

Download data is not yet available.

Article Details

How to Cite
QuesadaM. E. (2024). Influence of atmospheric and oceanic indexes on interannual precipitation in San Ramon, Costa Rica. Revista Cubana De Meteorología, 30, https://cu-id.com/2377/v30nspe10. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/852
Section
Original Articles

References

Alfaro et all (1999). Análisis de las Anomalías en el inicio y el término de la estación lluviosa en Centroamérica y su relación con los océanos Pacífico y Atlántico Tropical. Top. Meteor. Oceanog., 6(1):1-13. IMN, Costa Rica.
Alfaro, E. (2000). Eventos cálidos y fríos en el Atlántico Tropical Norte. Atmósfera 13: 109- 119.
Alfaro, E.J. & O.G. Lizano. (2001). Algunas relaciones entre las zonas de surgencia del Pacífico Centroamericano y los océanos Pacífico y Atlántico tropicales. Rev. Biol. Trop. 49 (Suppl. 2): 185-193.
Alfaro E y Jorge Cortés. (2012). Atmospheric forcing of cool subsurface water events in Bahía Culebra, Gulf of Papagayo, Costa Rica. Rev. Biol. Tropical. vol.60 suppl.2 San José Apr.
Amador, J.A., E.J. Alfaro, O.G. Lizano & V. Magaña. (2006). Atmospheric forcing of the eastern tropical Pacific. A Review. Prog. Oceanogr. 69: 101–142.
Amador, J. A., Rivera, E. R., Durán–Quesada, A. M., Mora, G., Sáenz, F., Calderón, B., & Mora, N. (2016). The easternmost tropical Pacific. Part I: A climate review. Revista de Biología Tropical, 64(Supplement 1), 1–22. https://doi.org/10.15517/rbt.v64i1.23407.
Bengtsson, L.; Rana, A. (2014). Long-term change of daily and multi-daily precipitation in southern Sweden. Hydrol. Process. 28, 2897–2911.
Boers et al., (2014). Prediction of extreme floods in the eastern Central Andes based on a complex network approach. National. 5:5199 | DOI: 10.1038/ncomms6199 |www.nature.com/nature communications.
Cerón, W.L.; Kayano, M.T.; Andreoli, R.V.; Avila-Diaz, A.; Ayes, I.; Freitas, E.D.; Martins, J.A.; Souza, R.A.F. (2021). Recent intensification of extreme precipitation events in the La Plata Basin in Southern South America (1981–2018). Atmos. Res. 249, 105299. [Google Scholar] [CrossRef]
Doyle, M.E.; Saurral, I.; Barros, V.R. (2012). Trends in the distributions of aggregated monthly precipitation over the La Plata Basin. Int. J. Climatol., 32, 2149–2162. [Google Scholar] [CrossRef]
Du, H.; Xia, J.; Zeng, S.D.; She, D.X.; Liu, J.J. Variations, and statistical probability characteristic analysis of extreme precipitation events under climate in Haihe River Basin, China. Hydrol. Process. 2014, 28, 913–925.
Endo, N.; Ailikun, B.; Yasunari, T. (2005). Trends in precipitation amounts and the number of rainy days and heavy rainfall events during summer in China from 1961 to 2000. J. Meteorol. Soc. Japan, 83, 621–631. [Google Scholar] [CrossRef] [Green Version]
Frame, T.H., Methven, J., Roberts, N. M., Titley, H. A., 2015. Predictability of Frontal Waves and Cyclones. Weather and Forecasting, 30(5), 1291-1302.
Fowler, H.J.; Ali, H.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Cabi, N.S.; Chan, S.; Dale, M.; et al. (2021). Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philos. Trans. R. Soc., 379, 20190542.
Hyndman, R. J. (1995). The problem with Sturges rule for constructing histograms. Department of Economics & Business Statistics, Norash University. https://robjhyndman.com/papers/sturges.pdf
Instituto Meteorológico Nacional [IMN]. (2018). El niño: fase cálida del ENOS. ENOS. https://www.imn.ac.cr/documents/10179/37774/5- EL+NI%C3%91O_FASE_CALIDA_ENSO.pdf/0b8e55b1-c560-4fd7-aae2- 710c95527702.
IMN (2023). Información dada por funcionarios del IMN en noticieros. Septiembre 2023.
Mclead (2022). Kendall Rank Correlation Mann-Kendall Trend Test. Version2.2.1
Mendenhall et al. (2010). Introducción a la Probabilidad y la estadística. CENGAGE. 13 Edición. México.
Mei, C.; Liu, J.; Chen, M.T.; Wang, H.; Li, M.; Yu, Y. (2018). Multi-decadal spatial and temporal changes of extreme precipitation patterns in northern China (Jing-Jin-Ji district, 1960–2013). Quat. Int. 476, 1–13.
Muñoz, E., Busalacchi, A.J., Nigam, S., Ruiz-Barradas, A., (2008). Winter and summer structure of the Caribbean low-level jet. J. Clim. 21 (6), 1260–1276. https://doi.org/ 10.1175/2007JCLI1855.1.
National Oceanographic and Atmospheric Administration [NOAA]. (30 de septiembre de 2023). Oceanic Niño Index. Datasets useful for ENSO research. https://psl.noaa.gov/enso/data.html
National Oceanographic and Atmospheric Administration [NOAA]. (2022c). Multivariate ENSO Index Version 2 (MEI.v2). https://psl.noaa.gov/enso/mei/
Palade D, D Pierce, D Cayan, A Gershunov, M Dettinger. (2014). The key role of dry days in changing regional climate and precipitation regimes. Scientific reports Nature.com
Quesada M y P. Waylen. (2012). Diferencias hidrológicas anuales y estacionales en regiones adyacentes: estudio de las subcuencas de los ríos Virilla y Grande de San Ramón, Costa Rica. Cuad. Geogr. Rev. Colombia. Geogr., Volumen 21, Número 2, p. 167 - 179, 2012. ISSN electrónico 2256-5442. ISSN impreso 0121-215X.
Quesada M.E. (2019). Precipitación acumulación en las tierras altas entre las secciones Tilarán y Central, Costa Rica. Physis Terrae. Vol. 1 No.1.
Quesada y Marsik (2014). Reacciones en la Precipitación ante oscilaciones oceánicas en sus temperaturas superficiales. Depresión Tectónica Central, Costa Rica. Papeles de Geografía. No. 59-60.
Ropelewski, C., and M. Halpert, 1987: Global and regional scale precipitation associated with El Nino/Southern Oscillation. Mon. Weather Rev, 115, 1606-1626. Ropelewski, C., and M. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268-284.
Sheldon K. (2019). Climate Change in the Tropics: Ecological and Evolutionary Responses at Low Latitudes. Annual Review of Ecology, Evolution, and Systematics Vol. 50: 303- 333
Tao et al. (2016). Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dynamics. 63337-3350.
Varun Joshi and Kireet Kumar (2006). Extreme rainfall events and associated natural hazards in Alaknanda Valley, Indian Himalayan Region. https://www.researchgate.net/publication/225652390.
Vuille, M., Burns, S. J., Taylor, B. L., Cruz, F. W., Bird, B. W., Abbott, M. B., et al. (2012). A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim. Past 8, 1309–1321. doi: 10.5.
Waylen, P., C. Caviedes, and M. Quesada, 1996: Interannual variability of monthly precipitation in Costa Rica. J. Climate, 9, 2606-2613. Waylen, P., M. Quesada, and C. Caviedes, 1994: The effects of El Niño-Southern Oscillation on precipitation in San Jose, Costa Rica. Int. J. Climatol., 14, 559-568.