Thermohaline structure in the loop current, in the presence of hurricanes that affected Cuba in 2002-2022

Main Article Content

Ida Mitrani Arenal
Javier Cabrales Infante
Alejandro Vichot Llano
Axel Hidalgo Mayo

Abstract

An investigation is presented, about the particularities of the thermohaline structure in the area of the Loop current, in the wake of tropical cyclones that moved from Cuban territory or its vicinity to those waters of the Gulf of Mexico, during the period 2002-2022. Of 38 cases, identified in the Cuban vortex area, almost a third affected the national territory with strong winds, heavy rain, high waves and coastal flooding, with an average of one case every two years, for a total of 11, that were selected as study cases. It is valid to point out that none of them originated in that region, but rather they moved there, from the Caribbean sea or the Atlantic ocean. It was possible to identify the most favorable areas for hurricane intensification, due to their oceanographic characteristics. They are located in the latitudes of 23-24ºN, adjacent to the Yucatán channel and towards the south-eastern area of ​​the Gulf of Mexico; in this zone, the isothermal layer shows thicknesses of more of 50 m and the warm waters, with temperatures of more than 26ºC, occupy more than a hundred meters thick. Furthermore, the high values ​​of salinity, with more than 36.5 psu and the maximum located between 150 and 200 m depth, favor the accumulation of heat, in the first hundred meters, from the surface.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mitrani ArenalI., Cabrales InfanteJ., Vichot LlanoA., & Hidalgo MayoA. (2024). Thermohaline structure in the loop current, in the presence of hurricanes that affected Cuba in 2002-2022. Revista Cubana De Meteorología, 30, https://cu-id.com/2377/v30nspe09. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/850
Section
Original Articles

References

COLA & GMU. (2018). Grid Analysis and Display System (GrADS) (2.2.1) [Computer software]. Center for Ocean-Land-Atmosphere Studies (COLA). George Mason University (GMU). https://cola.gmu.edu/grads/download.php
Committee on Advancing Understanding of Gulf of Mexico Loop Current Dynamics, Gulf Research Program, & National Academies of Sciences, Engineering, and Medicine. (2018). Understanding and Predicting the Gulf of Mexico Loop Current: Critical Gaps and Recommendations. National Academies Press. https://doi.org/10.17226/24823
Gallegos, A., Victoria, I., Zavala, J., Fernández, M., & Penié, I. (1998). Hidrología en los estrechos del Mar Caribe Occidental. Revista de Investigaciones Marinas, 19(1), 1–37.
GEBCO. (2009). Digital Bathymetry Atlas. British Oceanographic Data Center, Intergovernmental Oceanographic Commission, International Hydrographical Organization, Environment Research Council.
HYCOM. (2022). HYbrid Coordinate Ocean Model at the U. S. Global Ocean Data Assimilation Experiment. HYCOM. https://hycom.org/
INSMET. (2023). Resúmenes de Temporadas Ciclónicas. Instituto de Meteorología. http://www.insmet.cu
Meunier, T., Pallás‐Sanz, E., Tenreiro, M., Portela, E., Ochoa, J., Ruiz‐Angulo, A., & Cusí, S. (2018). The Vertical Structure of a Loop Current Eddy. Journal of Geophysical Research: Oceans, 123(9), 6070–6090. https://doi.org/10.1029/2018JC013801
Meunier, T., Pérez-Brunius, P., & Bower, A. (2022). Reconstructing the Three-Dimensional Structure of Loop Current Rings from Satellite Altimetry and In Situ Data Using the Gravest Empirical Modes Method. Remote Sensing, 14(17), 4174. https://doi.org/10.3390/rs14174174
Meunier, T., Sanz, E. P., Tenreiro, M., Ochoa, J., Angulo, A. R., & Buckingham, C. (2019). Observations of Layering under a Warm-Core Ring in the Gulf of Mexico. Journal of Physical Oceanography, 49(12), 3145–3162. https://doi.org/10.1175/JPO-D-18-0138.1
Mitrani Arenal, I., Cabrales Infante, J., & Alonso Díaz, Y. (2020). Valoración de la influencia de la circulación oceánica y el aporte de los ríos Sudamericanos en la actividad ciclónica, utilizando los re-análisis HYCOM. Revista Cubana de Meteorología, 26(4). https://eqrcode.co/a/ZdN0A0
Mitrani, I. (2017a). Meteorología Marina. Instituto de Meteorología/Agencia de Medio Ambiente/Casa CITMA℡. https://www.citmatel.inf.cu
Mitrani, I., García, E., Hidalgo, A., Hernández Baños, I., Salas, I., Pérez, R., Díaz, O. O., Vichot, A., Pérez, A., Cangas, R., Alvarez, L., Pérez, O. E., Rodríguez, C. M., Pérez, A. L., Morales, A., Viamontes, J., Pérez, J., & Rodríguez, J. A. (2017). Las inundaciones costeras en Cuba: Influencia de la estructura termohalina en las inundaciones. Instituto de Meteorología/Agencia de Medio Ambiente/Casa CITMA℡. https://www.citmatel.inf.cu
Mitrani-Arenal, I., & Díaz, O. (2008). Particularidades de la estructura termohalina y sus tendencias en aguas Cubanas. Revista Cubana de Meteorología, 14(1), 54–73. http://rcm.insmet.cu/index.php/rcm/article/view/278
NHC (National Hurricane Center). (2023). National Hurricane Center Archive. https://www.nhc.noaa.gov/data
Pierce, D. W. (2017). Ncview 2.1.8, David W. Pearce 8 March 2017. University of California. http://meteora.ucsd.edu:80/~pierce/ncview_home_page_html
Rivero Ordaz, L., Arriaza Oliveros, L., Sánchez Pérez, E. O., Athié, G., Carrillo Betancourt, Y., Ochoa de La Torre, J. L., Candela Pérez, J., Sheinbaum, J., & Hernández Gonzalez, M. (2022). Variabilidad espacio-temporal de la Corriente de Yucatán en el periodo 2012-2018 y la influencia del evento ENOS (2015-2016). Revista Cubana De Meteorología, 28(3), e11. https://cu-id.com/2377/v28n3e11
Simanca, J., Ramírez, O., Fernández, L., Arriaza, L., Rodas, L., Sponda, S., García, R., Alburquerque, O., & García, I. (2012). Variabilidad de las corrientes marinas en el Canal de Yucatán: “Lado Cuba”. Contracorriente cubana, Primera Parte. Serie Oceanológica, 10, 1–10. http://hdl.handle.net/1834/6696