WRF sensitivity in topoclimates of eastern Cuba
Main Article Content
Abstract
The research was carried out to evaluate the performance of physical parameterizations and static boundary conditions of the meteorological prediction and research model, WRF, for the study of topoclimates in the eastern region of Cuba. In three stages, short-term local climate simulations were performed with combinations of cumulus, microphysics, and planetary boundary layer parameterizations. In the third stage, the contribution to model performance of the integration of high-resolution national spatial databases as static boundary conditions was also evaluated. ERA5 was used as the initial and boundary conditions data set, with three nested domains at spatial resolutions of 30, 10 and 3.33 km. The study was carried out for the temperature and precipitation of the rainy and dry periods of 2018. The results obtained showed that, of the climatic elements under study, precipitation showed the greatest uncertainty in all experiments and case studies. Similarly, the high-resolution spatial databases that were integrated into the model as static boundary conditions influenced the performance of WRF at the local scale. The best performance of the WRF for the study of topoclimates in the eastern region of Cuba was achieved with the Kain-Fritcsh parameterizations as a cluster, the microphysics of Thompson and Yonsei University as the planetary boundary layer option, active topographic wind by the method of geoform correction.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Álvarez, A. F. & Mercadet, A. 2012. El sector forestal cubano y el cambio climático. La Habana, Cuba.: Instituto de Investigaciones Agro-Forestal. Ministerio de la Agricultura., 248 p.
Annor, T.; Lamptey, B.; Wagner, S.; Oguntunde, P.; Arnault, J.; Heinzeller, D. & Kunstmann, H. 2018. “High-resolution long-term WRF climate simulations over Volta Basin. Part 1: validation analysis for temperature and precipitation”. Theoretical and Applied Climatology, 133(3–4): 829–849, ISSN: 0177-798X, 1434-4483, DOI: 10.1007/s00704-017-2223-5.
Barry, R. G. 2008. Mountain Weather and Climate. Boulder, USA: Cambridge University Press, 532 p., ISBN: 978-0-521-68158-2.
Capote, R. P. & Berazaín, R. 1984. “Clasificación de las formaciones vegetales de Cuba”. Revista del Jardín Botánico Nacional, 5(2): 27–75, ISSN: 02535696.
Centella-Artola, A. 2019. Los modelos climáticos y la estimación del clima futuro. (ser. Entendiendo el cambio climático), La Habana, Cuba: AMA, 48 p., ISBN: 978-959-300-157-1.
CITMA 1999. Decreto - Ley no. 201 Del Sistema Nacional de Áreas Protegidas. Sección Ordinaria, cod. Gaceta Oficial de la República de Cuba., no. 84, p. 1355.
Delgado-Téllez, R. & Peña-de la Cruz, A. 2019. “Artículo Original Cartografía de variables climáticas basada en gradientes, sistemas de expertos y SIG Cartography of climate variables using gradients, expert systems and GIS”. .
Fernando, H. J. S.; H. P.; Katopodes, F.; Pardyjak, E.; Dunn, P.; Pratt, T.; Hoch, S.; Steenburgh, J.; Whiteman, D.; Pu, Z.; & F.J. de Wekker, S. 2017. Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. Reporte Final del Programa, no. N00014-11-1–0709, Notre Dame, Estados Unidos.: University of Notre Dame, 43 p.
Fernando, H. J. S.; Mann, J.; Palma, J. M. L. M.; Lundquist, J. K.; Barthelmie, R. J.; Belo-Pereira, M.; Brown, 2019. “The Perdigão: Peering into Microscale Details of Mountain Winds”. Bulletin of the American Meteorological Society, 100(5): 799–819, ISSN: 0003-0007, 1520-0477, DOI: 10.1175/BAMS-D-17-0227.1.
FIDA 2019. Proyecto de Desarrollo Cooperativo Agroforestal. (ser. División de América Latina y el Caribe. Departamento de Administración de Programas), no. 2000002243, República de Cuba: Fondo Internacional de Desarrollo Agrícola.
Geiger, R.; Aron, R. H. & Todhunter, P. 2003. The Climate Near the Ground. sixth edition ed., Lanham, MD, USA: Rowman and Littlefield Publishers, ISBN: 978-3-322-86582-3.
Giorgi, F. 2019. “Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next?”. Journal of Geophysical Research: Atmospheres, ISSN: 2169-897X, 2169-8996, DOI: 10.1029/2018JD030094, Available:
Grell, G. A. & Freitas, S. R. 2014. “A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling”. Atmospheric Chemistry and Physics, 14(10): 5233–5250, ISSN: 1680-7324, DOI: 10.5194/acp-14-5233-2014.
Janjić, Z. I. 2001. Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso Model. NCEP Office Note 437, Available:
Jiménez, P. A. & Dudhia, J. 2012. “Improving the Representation of Resolved and Unresolved Topographic Effects on Surface Wind in the WRF Model”. Journal of Applied Meteorology and Climatology, 51(2): 300–316, ISSN: 1558-8424, 1558-8432, DOI: 10.1175/JAMC-D-11-084.1.
Junquas, C.; Takahashi, K. & Condom, T. 2017. “Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the Central Andes”. Climate Dynamics, 50(11–12): 3995–4017.
Kain, J. S. 2004. “The Kain–Fritsch Convective Parameterization: An Update”. Journal of Applied Meteorology, 43(1): 170–181, ISSN: 0894-8763, 1520-0450, DOI: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Katragkou, E.; García-Díez, M.; Vautard, R.; Sobolowski, S.; Zanis, P.; Alexandri, G.; Cardoso, R. M.; Colette, A.; Fernandez, J.; Gobiet, A.; Goergen, K.; Karacostas, T.; Knist, S.; Mayer, S.; Soares, P. M. M.; Pytharoulis, I.; Tegoulias, I.; Tsikerdekis, A. & Jacob, D. 2015. “Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble”. Geoscientific Model Development, 8(3): 603–618, ISSN: 1991-9603, DOI: 10.5194/gmd-8-603-2015.
Kryza, M. A.; Wałaszek, K.; Ojrzyńska, H.; Szymanowski, M.; Werner, M. & Dore, A. J. 2017. “High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 1: Model Configuration and Statistical Evaluation for the 1981–2010 Period”. Pure and Applied Geophysics, 174(2): 511–526, ISSN: 0033-4553, 1420-9136, DOI: 10.1007/s00024-016-1272-5.
Lin, Y.-L.; Farley, R. D. & Orville, H. D. 1983. “Bulk Parameterization of the Snow Field in a Cloud Model”. Journal of Climate and Applied Meteorology, 22(6): 1065–1092, ISSN: 0733-3021, DOI: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Liniger, H. & Weingartner, R. 2018. “Montañas y recursos hídricos”. Revista internacional de silvicultura e industrias forestales, 49(195), ISSN: 0251-1584, Available:
Liu, P.; Qiu, X.; Yang, Y.; Ma, Y. & Jin, S. 2018. “Assessment of the Performance of Three Dynamical Climate Downscaling Methods Using Different Land Surface Information over China”. Atmosphere, 9(3): 101, ISSN: 2073-4433, DOI: 10.3390/atmos9030101.
Marta-Almeida, M.; Teixeira, J. C.; Carvalho, M. J.; Melo-Gonçalves, P. & Rocha, A. M. 2016. “High resolution WRF climatic simulations for the Iberian Peninsula: Model validation”. Physics and Chemistry of the Earth, Parts A/B/C, 94: 94–105, ISSN: 14747065, DOI: 10.1016/j.pce.2016.03.010.
Martínez-Castro, D.; Kumar, Sh.; Flores-Rojas, J. L.; Moya-Álvarez, A. S.; Valdivia-Prado, J. M.; Villalobos-Puma, E.; Del Castillo-Velarde, C. & Silva-Vidal, Y. 2019. “The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW”. Atmosphere, 10(8): 442, ISSN: 2073-4433, DOI: 10.3390/atmos10080442.
Mateo-Rodríguez, J. M. 2016. Regiones y paisajes geográficos de Cuba. .
Mayor, Y. G. & Mesquita, M. D. 2015. “Numerical Simulations of the 1 May 2012 Deep Convection Event over Cuba: Sensitivity to Cumulus and Microphysical Schemes in a High-Resolution Model.”. Advances in Meteorology., 2015: 16, ISSN: http://dx.doi.org/10.1155/2015/973151.
Mellor, G. L. & Yamada, T. 1982. “Development of a turbulent closure model for geophysical fluid problems”. Rev. Geoph. Space Phys, 20: 851–875.
Montenegro, U. 1989. Procedimientos metodológicos para la investigación y caracterización del clima en las montañas de cuba. .
Montenegro, U. 1993. Caracterización Climática de las montañas de la región oriental de Cuba. Fondos de Archivo del Centro Meteorológico Provincial Guantánamo, Cuba.
Morrison, H.; Thompson, G. & Tatarskii, V. 2009. “Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes”. Monthly Weather Review, 137(3): 991–1007, ISSN: 1520-0493, 0027-0644, DOI: 10.1175/2008MWR2556.1.
Moya-Álvarez, A. S.; Martínez-Castro, D.; Flores, J. L. & Silva-Vidal, Y. 2018. “Sensitivity Study on the Influence of Parameterization Schemes in WRF_ARW Model on Short- and Medium-Range Precipitation Forecasts in the Central Andes of Peru”. Advances in Meteorology, 2018: 1–16, ISSN: 1687-9309, 1687-9317, DOI: 10.1155/2018/1381092.
Moya-Álvarez, A. S.; Martínez-Castro, D.; Kumar, Sh.; Estevan, R. & Silva-Vidal, Y. 2019. “Response of the WRF model to different resolutions in the rainfall forecast over the complex Peruvian orography”. Theoretical and Applied Climatology, ISSN: 0177-798X, 1434-4483, DOI: 10.1007/s00704-019-02782-3, Available:
NCAR. 2018. Weather Research and Forecasting Model ARW. Version 4 Modeling System User´s Guide. Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research.
Núñez-Jiménez, A. & Viña-Bayés, N. 1989. Regiones Naturales y Antrópicas. (ser. Nuevo Atlas nacional de Cuba.), Habana, Cuba.: Academia de ciencias de Cuba.
ONEI (ed. ser.). 2023. Anuario Estadístico de Cuba 2022. (ser. Agricultura, Ganadería, Silvicultura y Pesca.), Oficina Nacional de Estadística e Información, 27 p.
Peña-de la Cruz, A.; Delgado-Téllez, R.; Guevara-Velasco, V.; Rodríguez-Montoya, L. & Savón-Vaciano, Y. 2021. “Estudios de clima de montaña en Cuba, topoclimas.”. Revista Cubana de Meteorología, 27(3), ISSN: 2664-0880, Available:
Planos-Gutiérrez, E. 2020. “Cambio climático y la gestión de adaptación.”. Revista Cubana de Administración Pública y Empresarial [Internet], 4(3): 322–333.
Portela, A. H. 1989. “Geomorfología 1:1000000”. In: Nuevo Atlas Nacional de Cuba., Instituto de Geografía de la Academia de Ciencia de Cuba y por el Instituto Cubano de Geodesia y Cartografía ed., Habana, Cuba.: Academia de Ciencia de Cuba, p. 300.
Qiu, Y.; Hu, Q. & Zhang, C. 2017. “WRF simulation and downscaling of local climate in Central Asia.”. International Journal of Climatology, 37: 513–528, ISSN: 08998418, DOI: 10.1002/joc.5018.
Raghavan, S. V.; Vu, M. T. & Liong, S. Y. 2016. “Regional climate simulations over Vietnam using the WRF model”. Theoretical and Applied Climatology, 126(1–2): 161–182, ISSN: 0177-798X, 1434-4483, DOI: 10.1007/s00704-015-1557-0.
Rodríguez Rodríguez, F. F. R. 2005. Mapa Isoyético de la República de Cuba, 1961-2000. Resultado Técnico del Instituto Nacional de Recursos Hidráulicos., La Habana, Cuba.: INRH, 103 p.
Sierra-Lorenzo, M.; Bezanilla-Morlot, A.; Centella-Artola, A. D.; León-Marcos, A.; Borrajero-Montejo, I.; Ferrer-Hernández, A. L.; Salazar-Gaitán, J. L.; Lau-Melo, A.; Picado-Traña, F. & Pérez-Fernández, J. 2020. “Assessment of Different WRF Configurations Performance for a Rain Event over Panama”. Atmospheric and Climate Sciences, 10(03): 280–297, ISSN: 2160-0414, 2160-0422, DOI: 10.4236/acs.2020.103016.
Skamarock, W. C.; Klemp, J.; Dudhia, J.; Gill, D. O.; Barker, D.; Wang, W. & Powers, J. G. 2008. “A Description of the Advanced Research WRF Version 3”. 27: 3–27.
Spiridonov, A. 1981. “Principios de la metodología de las investigaciones de campo y el mapeo geomorfológico”. In: Facultad de Geografía de la Universidad de La Habana ed., Ciudad de La Habana, Cuba.: Editorial MES.
Thompson, G.; Rasmussen, R. M. & Manning, K. 2004. “Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis”. Monthly Weather Review, 132(2): 519–542, ISSN: 0027-0644, 1520-0493, DOI: 10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.
Trusov, I. I. 1967. Mapas isoyéticos lámina de lluvia media máxima y del 1, 5 y 10% de probabilidades. Habana, Cuba.: Instituto Nacional de Recursos Hidráulicos.
Trusov, I. I. & Davitaya, F. 1965. Los recursos climáticos de Cuba. La Habana, Cuba.: Instituto Nacional de Recursos Hidráulicos.
Varga, Á. J. & Breuer, H. 2020. “Sensitivity of simulated temperature, precipitation, and global radiation to different WRF configurations over the Carpathian Basin for regional climate applications”. Climate Dynamics, ISSN: 0930-7575, 1432-0894, DOI: 10.1007/s00382-020-05416-x, Available:
Varona-González, H. L.; Martínez-Serrano, L.; Pavón-López, J. & Hodelin-Shombert, H. 2018. “Estudio del oleaje generado por un huracán de categoría 5 en la costa sur de las provincias orientales de Cuba”. .
Viña-Bayés, N. 2001. Diversidad Biológica de los Macizos Montañosos Sierra Maestra Y Nipe-Sagua-Baracoa. Santiago de Cuba, Cuba: BIOECO, 89 p.
Wang, X.; Tolksdorf, V.; Otto, M. & Scherer, D. 2020. “WRF‐based dynamical downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new version of the High Asia Refined analysis”. International Journal of Climatology, ISSN: 0899-8418, 1097-0088, DOI: 10.1002/joc.6686, Available:
Wootten, A.; Bowden, J. H.; Boyles, R. & Terando, A. 2016. “The Sensitivity of WRF Downscaled Precipitation in Puerto Rico to Cumulus Parameterization and Interior Grid Nudging”. Journal of Applied Meteorology and Climatology, 55(10): 2263–2281, ISSN: 1558-8424, 1558-8432, DOI: 10.1175/JAMC-D-16-0121.1.
Yoshino, M. M. 1975. Climate in a Small Area. An Introduction to Local Meteorology. Tokyo, Japón.: University of Tokyo Press., 549 p.