Detection of change in the significant wave height in the Cuban coast

Main Article Content

Axel Hidalgo Mayo
Ida Mitrani Arenal
Graciela Pérez Rivas

Abstract

The objective of this work is to determine the changes of the significant wave height (Hsig) in the Cuban shore area during the period 1950-2022, as a contribution to the studies of climate variability that are developed in the country, within the framework of the Task Life. The Hsig data from the ERA5 reanalysis were used with temporal resolution of 6 h and spatial resolution of 0.5⁰ of latitude in that order, as well as the NAO (North Atlantic Oscillation) and ENSO (El Niño- South Oscillation) index. The last one is referred to the Niño3.4 index. Besides, extreme indices were applied for the detection of climate change referred to Hsig in the Cuban archipelago. The results show statistically significant changes in the habitual Hsig regime, around the 5% from 1981 on all the Cuban shore perimeter, except from Cabo San Antonio to Punta Maternillos, as well as an increasing annual linear trend of Hsig in all the Cuban coasts up to 0.002 m/year. It is concluded that the interannual variability of Hsig in the Cuban coasts has a higher correlation with the NAO, fundamentally, in both coasts of the eastern region, while from the multiannual ENSO has a greater influence, but it is basically reflected in the southern Cuban coast. On another hand, the extreme indicators of climate change show that the Cuban marine climate referred to Hsig from 1991 is becoming more extreme.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hidalgo MayoA., Mitrani ArenalI., & Pérez RivasG. (2023). Detection of change in the significant wave height in the Cuban coast. Revista Cubana De Meteorología, 29(3), https://cu-id.com/2377/v29n3e07. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/796
Section
Original Articles

References

Ballester, M.; González, C. & Pérez, R. 2010. Variabilidad de la actividad ciclónica en la región del Atlántico Norte y su pronóstico. La Habana: Editorial Academia, 170 p., ISBN: 978-959-270-175-5.
Bernal, G.; Osorio, A.; Urrego, L.; Peláez, D.; Molina, E.; Zea, S.; Montoya, R. D. & Villegas, N. 2016. “Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems”. Journal of Marine Systems, 164: 85–100, DOI: 10.1016/j.jmarsys.2016.08.007.
Bertin, X.; Proteau, E. & Letetrel, C. 2013. “A significant increase in wave height in the North Atlantic Ocean over the 20th century”. Global and Planetary Change, 106: 77–83, DOI: 10.1016/j.gloplacha.2013.03.009.
Camus, P.; Losada, I., J.; Izaguirre, C.; Menéndez, M. & Pérez, J. 2017. “Statistical wave climate projections for coastal impact assessments”. Earth´s Future, 5(3): 918–933, DOI: 10.1002/2017EF000609.
Camus, P.; Menéndez, M.; Méndez, F. J.; Izaguirre, C.; Espejo, A.; Cánovas, V.; Pérez, J.; Rueda, A.; Losada, I. J. & Medina, R. 2014. “A weather-type statistical downscaling framework for ocean wave climate”. Journal of Geophysical Research: Oceans, 119: 1–17, DOI: 10.1002/ 2014JC010141.
Casals, R. 2004. “Los Procesos de Transformación del Oleaje e Incrementos del Nivel Medio del Mar en Cayo Largo del Sur, Archipiélago de los Canarreos”. Revista Cubana de Meteorología, 11(2): 74–84.
COLA 2018. Grid Analysis and Display System (Grads). Version 2.2.1, [Linux], Virginia, US: The Center for Ocean-Land-Atmosphere Studies.
Copernicus Climate Change Service. 2017. ERA5: Fifth generation of ECMWF atmospheric reanalysis of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). Copernicus Climate Change Service Climate Data Store, Available: , [Consulted: June 23, 2023].
Cousineau, J. & Murphy, E. 2022. “Numerical Investigation of Climate Change Effects on Storm Surges and Extreme Waves on Canada’s Pacific Coast”. Atmosphere, 13: 311–337, DOI: 10.3390/ atmos13020311.
Devis, A.; Montoya, R. A.; Bernal, G. & Osorio, A. F. 2017. “Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications”. Applied Ocean Research, 69: 10–26, DOI: 10.1016/j.apor.2017.09.012.
Dobrynin, M.; Murawsky, J.; Baehr, J. & Ilyina, T. 2015. “Detection and Attribution of Climate Change Signal in Ocean Wind Waves”. Journal of Climate, 28(3): 1578–1591, DOI: 10.1175/JCLI-D-13-00664.1.
Fan, Y.; Lin, S., J.; Griffies, S., M. & Hemer, Mark. A. 2014. “Simulated Global Swell and Wind-Sea Climate and Their Responses to Anthropogenic Climate Change at the End of the Twenty-First Century”. Journal of Climate, 27(10): 3516–3536, DOI: 10.1175/JCLI-D-13-00198.1.
GEBCO 2014. GEBCO Digital Atlas. [Windows], Liverpool, United Kingdom: Natural Environmental Research Council, Available: .
González, C.; Martínez, M.; Hernández, M.; Pérez, R.; Velázquez, B.; Valderá, N.; González, I.; Cutié, V.; Vázquez, R.; Cruz, E.; Mitrani, I.; Hidalgo, A.; Cabrales, J.; Lapinel, B.; Marzo, O. & Ríos, Y. 2023. “Estado del Clima en Cuba 2022. Resumen ampliado”. Revista Cubana de Meteorología, 29(1): 1–16.
Goodwin, P.; Haigh, I. D.; Rohling, E. J. & Slangen, A. 2017. “A new approach to projecting 21st century sea-level changes and extremes”. Earth’s Future, 5(2): 240–253, DOI: 10.1002/2016EF000508.
Hemer, M. A.; Wang, X. L.; Weisse, R. & Swail, V. R. 2012. “Advancing Wind-Waves Climate Science: The COWCLIP Project”. Bulletin of the American Meteorological Society, 93(6): 791–796, DOI: 10.1175/BAMS-D-11-00184.1.
Hemer, Mark. A.; Fan, Y.; Mori, N.; Semedo, A. & Wang, X. L. 2013. “Projected changes in wave climate from a multi-model ensemble”. Nature Climate Change, 3(5): 471–476, DOI: 10.1038/nclimate1791.
Hidalgo, A.; Hernández, N. & Perigó, E. 2019. “Períodos de retorno para las inundaciones costeras y los eventos extremos de viento y oleaje en la costa nororiental de Cuba”. Revista Cubana de Meteorología, 25(2): 191–202.
Hidalgo, A.; Mitrani, I. & Pérez, G. 2017. “Nueva clasificación de las inundaciones costeras en Cuba”. Revista Cubana de Meteorología, 23(2): 209–216.
Hidalgo, A.; Mitrani, I.; Pérez, G.; Hernández, N.; Córdova, O., L.; Regueira, V.; Ramírez, W.; González, C. M.; Machado, A.; Perigó, E.; Lorenzo, L.; Agüero, K.; Vinajera, V.; Jiménez, J.; Boligán, M.; Sánchez, L.; Victorero, A.; Mursulí, A.; García, L.; Ortega, F. E.; Castellanos, M. J.; Araujo, L. A.; Báez, E.; Laborde, N. & Casals, R. 2016. Cronología de las inundaciones costeras por penetración del mar para el archipiélago cubano. Resultado Científico, Holguín: CMP Holguín, Instituto de Meteorología, 40 p.
Instituto de Geografía Tropical 2019. Atlas Nacional de Cuba LX Aniversario. [Multimedia, Windows], La Habana: Ministerio de Ciencia, Tecnología y Medio Ambiente.
IPCC 2008. Cambio climático 2007: Bases de la Ciencias Físicas. Ginebra: Grupo Intergubernamental de Expertos sobre el Cambio Climático, 153 p., ISBN: 92-9169-121-6.
Jevrejeva, S.; Moore, J. C. & Grinsted, A. 2012. “Sea level projections to AD2500 with a new generation of climate change scenarios”. Global and Planetary Change, 80–81: 14–20, DOI: 10.1016/j.gloplacha.2011.09.006.
Kaur, S.; Kumar, P.; Min, S.-K.; Krishnan, A. & Wang, X. L. 2023. “Evaluation of COWCLIP2.0 Ocean wave extreme indices over the Indian Ocean”. Climate Dynamics, DOI: 10.1007/s00382-023-06882-9.
Lakku, N., K. & Behera, M. R. 2022. “Skill and Intercomparison of Global Climate Models in Simulating Wind Speed, and Future Changes in Wind Speed over South Asian Domain”. Atmosphere, 13: 864–894, DOI: 10.3390/atmos13060864.
Lemos, G.; Menendez, M.; Semedo, A.; Camus, P.; Hemer, M.; Dobrynin, M. & Miranda, P. 2020. “On the need of bias correction methods for wave climate projections”. Global and Planetary Change, 186: 103109–103129, DOI: 10.1016/j.gloplacha.2019.103109.
Martínez, A.; Tsimplis, M. N.; Marcos, M.; Feng, X.; Gomis, D.; Jordà, G. & Josey, S. A. 2016. “Response of the North Atlantic wave climate to atmospheric modes of variability”. International Journal of Climatology, 36(3): 1210–1225, DOI: 10.1002/joc.4415.
Mitrani, I.; García, E.; Hidalgo, A.; Hernández, I.; Salas, I.; Pérez, R.; Díaz, O. O.; Vichot, A.; Pérez, A.; Cangas, R.; Álvarez, L.; Pérez, O., E.; Rodríguez, J. A.; Rodríguez, C. M.; Pérez, Ada. L.; Morales, A.; Viamontes, J. & Pérez, J. 2017. Inundaciones costeras en Cuba y sus tendencias climáticas. La Habana: CITMATEL, 192 p., ISBN: 978-959-237-730-1.
Mitrani, I.; Pérez, A.; Borrajero, I.; Vichot, A.; Alonso, Y.; González, Y.; Martínez, D. & Calzadilla, A. 2013. Aplicación de los modelos WRF y WW3 para el pronóstico del tiempo y del oleaje en el Archipiélago Cubano. Resultado Científico, La Habana: Instituto de Meteorología, 53 p.
Mitrani, I.; Pérez, A.; Cabrales, J.; Povea, Y.; Hernández, M. & Díaz, O. O. 2019. “Coastal flood forecast in Cuba, due to hurricanes, using a combination of numerical models”. Revista Cubana de Meteorología, 25(2): 121–138.
Mitrani, I.; Vega, R.; Pérez, R. & Salas, I. 1999. “Determinación de las características extremas del viento, el oleaje y la sobreelevación del nivel del mar en las costas de Cuba.”. Revista Cubana de Meteorología, 6(1): 38–42.
Montoya, R.; Menéndez, M. & Osorio, A. 2018. “Exploring changes in Caribbean hurricane induced wave heights”. Ocean Engineering, 163: 126–135, ISSN: 1873-5258, DOI: 10.1016/j.oceaneng.2018.05.032.
Mori, N.; Yasuda, T.; Mase, H.; Tom, T. & Oku, Y. 2010. “Projection of Extreme Wave Climate Change under Global Warming”. Hydrological Research Letters, 4: 15–19, DOI: 10.3178/HRL.4.15.
Morim, J.; Vitousek, S.; Hemer, M.; Reguero, B.; Erikson, L.; Casas-Prat, M.; Wang, X. L.; Semedo, A.; Mori, N.; Shimura, T.; Mentaschi, L. & Timmermans, B. 2021. “Global-scale changes to extreme ocean wave events due to anthropogenic warming”. Environmental Research Letters, 16(7): 074056–0740565, DOI: 10.1088/1748-9326/ac1013.
ONU 2015. Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Nueva York: Asamblea General de las Naciones Unidas, 40 p.
Pérez, P. J.; Casals, R. & Sánchez, A. 2001. “Características sinópticas y estado de la mar en las costas de la Península de Guanahacabibes.”. Revista Cubana de Meteorología, 8(1): 96–101.
Pérez, R. 2011. Meteorología Tropical. La Habana: Instituto de Meteorología.
Planos, E., O. & Gutiérrez, T., L. (eds.). 2020. Tercera Comunicación Nacional a la Convención Marco de las Naciones Unidas sobre Cambio Climático. La Habana: AMA Sello Editorial, 402 p., ISBN: 978-959-300-170-0.
Planos, E. O.; Rivero, R. & Guevara, V. (eds.). 2013. Impactos del Cambio Climático y Medidas de Adaptación en Cuba. La Habana: Editorial AMA, 430 p., ISBN: 978-959-300-039-0.
R Core Team 2022. R: A language and environment for statistical computing. Version 4.2.2 ‘Innocent and Trusting’, [Linux], R, Vienna, Austria: R Foundation for Statistical Computing, Available: .
Salas, I. & Mitrani, I. 1992. “Elementos de ola de viento en un ciclón tropical.”. Revista Cubana de Meteorología, 5(2): 40–44.
Salas, I.; Moreno, A.; Mitrani, I. & Lezcano, J. C. 1992. “Oleaje máximo y régimen hidroclimático de la costa sur de la región oriental.”. Revista Cubana de Meteorología, 5(1): 12–16.
Sardana, D.; Kumar, P.; Bhaskaran, P. K. & Balakrishnan, T. M. 2022. “The projected changes in extreme wave height indices over the Indian Ocean using COWCLIP2.0 datasets”. Climate Dynamics, 59, DOI: 10.1007/s00382-022-06579-5.
Schulzweida, U. 2020. Climate Data Operator. Version 1.9.9, [Linux], Hamburg, Germany: Max Planck Institute of Meteorology.
Sealy, K. S. & Strobl, E. 2017. “A hurricane loss risk assessment of coastal properties in the Caribbean: Evidence from the Bahamas”. Ocean & Coastal Management, 149: 42–51, DOI: 10.1016/j.ocecoaman.2017.09.013.
USACE 1984. Shore Protection Manual. Fourth Edition ed., vol. I, Washington, D.C.: U.S. Army Corps of Engineers, 540 p.
USACE 2006. Coastal Engineering Manual. (no. ser. Engineer Manual 1110-2-1100), vol. II, Washington, D.C.: U.S. Army Corps of Engineers, 1720 p.
Vega, M. J.; Álvarez, O.; Restrepo, J. C.; Ortiz, J. C. & Otero, L. J. 2020. “Interannual variability of wave climate in the Caribbean Sea”. Ocean Dynamics, DOI: 10.1007/s10236-020-01377-1.
Wang, X. L.; Feng, Y. & Swail, V. R. 2012. “North Atlantic wave height trends as reconstructed from the 20th century reanalysis”. Geophysical Research Letters, 39(18): L18705–L18711, DOI: 10.1029/2012GL053381.
Wang, X. L.; Feng, Y. & Swail, V. R. 2014. “Changes in global ocean wave heights as projected using multimodel CMIP5 simulations”. Geophysical Research Letters, 41: 1026–1034, DOI: 10.1002/2013GL058650.
Wilks, D. S. 2019. Statistical methods in the atmospheric sciences. Fourth Edition ed., Oxford, United Kingdom: Elsevier/Academic Press, 818 p., ISBN: 978-0-12-385022.