A sensitivy study of microphysics schemes of the wrf-arw model for low-level wind shear forecast in José Martí International Airport during convective storms
Main Article Content
Abstract
A sensitivity study is performed with Lin, Morrison 2-moment, WSM5, and WSM6 microphysics schemes for the numerical forecast of the low-level wind shear (LLWS) derived from storms at "José Martí" International Airport using the Weather Research and Forecasting (WRF) model. As case studies, we select four storms associated with synoptic patterns that cause dangerous conditions at this aerodrome. The simulations are made for several atmosphere low levels. The influence of obstacles of comparable height with the atmospheric low-levels was taken into account to obtain the wind fields with mass consistent correction. In this paper, the evaluation process of surface variables is focus on temperature, surface pressure, relative humidity, and precipitation. The schemes did not show bigger differences among themselves. From all of the variables, relative humidity exhibits the worst results. The best performance for precipitation forecast was obtained with WSM5 in rainy season (May-October) and Lin in dry season (November-April). For LLWS sensitivity, results indicate that each hydrometeor particle concentration predicted by tested microphysics has an influence on vertical wind profiles, particularly, for low-levels. WSM5 and Lin seems the best options for microphysics scheme, although that is not conclusive.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Boadh, R. & Satyanarayana, A.N.V. 2016. “Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for their application to air pollution dispersion modeling over a tropical station”. Atmósfera, 29(1): 61-81, ISSN: 0187-6236, DOI:10.20937/ATM.2016.29.01.05.
Boilley, A.; Mahouf, J.-F. & Lac, C. 2008. “High resolution numerical modeling of low level wind-shear over the Nice-Côte d’Azur Airport”. In: 13th American Meteorology Society Conference on Mountain Meteorology, Session9A.2, United States of America, pp. 11-15, Available:
Campbell, S.D. & Olson, S. 1987. “Recognizing low-altitude wind shear hazards from Doppler weather radar: an artificial intelligence approach”. Journal of Atmospheric and Oceanic Technology, 4(1): 5-18, ISSN: 0739-0572, DOI: 10.1175/1520-0426(1987)004<0005:RLAWSH>2.0.CO;2.
Carvalho, D.; Rocha, A.; Gómez-Gesteira, M. & Santos, C. 2012. “A sensitivity study of the WRF model in wind simulation for an area high wind energy”. Environmental Modelling & Software, 33: 23-34, ISSN: 1364-8152, DOI: 10.1016/j.envsoft.2012.01.2019.
Chan, P.W. & Lee, Y.F. 2011. “Application of a groundbased, multi-channel microwave radiometer to the alerting of low-level windshear at an airport”. Meteorologische Zeitschrift, 20(4): 423-429, ISSN: 0941-2948, DOI: 10.1127/0941-2948/2011/0275.
Chan, P.W. & Lee, Y.F. 2012. “Application of short-range LIDAR in wind shear alerting”. Journal of Atmospheric and Oceanic Technology, 29(2): 207-220, ISSN: 0739-0572, DOI: 10.1175/JTECH-D-11-00086.
Chan, P.W. & Hon, K.-K. 2016. “Performance of super high resolution numerical weather prediction model in forecasting terrain-disrupted airflow at the Hong Kong International Airport: Case studies”. Meteorological Applications, 23(1): 101-114, ISSN: 1469-8080, DOI: 10.1002/met.1534.
Coll-Hidalgo, P.; Pérez-Alarcón, A. & González-Jardines, P.M. 2021. “Evaluation of Microphysics Schemes in WRF-ARW Model for Numerical Wind Forecast in José Martí Airport”. In: Proceedings of The 3rd International Electronic Conference on Atmospheric Sciences.
Creighton, G.; Kuchera, E.; Adams-Selin, R.; McCormick, J.; Rentschler, S. & Wickard, B. 2014. “AFWA diagnostics in WRF”.
Díaz-Zurita, A.; Góngora-González, C.M.; Lobaina-LaO, A.; Pérez-Alarcón, A. & Coll-Hidalgo, P. 2021. “Numerical mesoscale and short-term wind forecast for the “José Martí” International Airport of Havana”. Revista Brasileira de Meteorologia, 36(2),171-182, ISSN: 1982-4351, DOI:10.1590/0102-77863610007.
Dudhia, J. 1989. “Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model”. Journal of Atmospheric Sciences, 46(20): 3077–3107, ISSN: 0022-4928, DOI:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
García-Diez, M.; Fernández, J.; Fitaand, L. & Yague, C. 2013. “Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe”. Quarterly Journal of the Royal Meteorological Society, 139(671): 501-514, ISSN:1477-870X, DOI:10.1002/qj.1976.
Grell, G.A. & Freitas, S.R. 2013. “A scale and aerosol aware stochastic convective parameterization for weather and air quality modelling”. Atmospheric Chemestry and Physics Discussion, 13(23): -23845–23893, ISSN: 1680-7316, DOI:10.5194/acp-14-5233-2014.
Han, J.Y.; Baik, J.J. & Khain, A.P. 2012. “A numerical study of urban aerosol impacts on clouds and precipitation”. Journal of Atmospheric Sciences, 69(2): 504-520, ISSN: 0022-4928, DOI:10.1007/s13143-014-0016-7.
Halder, M.; Hazra, A.; Mukhopadhyay, P. & Siingh, D. 2015. “Effect of the better representation of the cloud ice-nucleation in WRF microphysics schemes: A case study of a severe storm in India”. Atmospheric Research, 154: 155-174, ISSN: 0169-8095, DOI:10.5194/angeo-30-897-2012.
Hermes, L.G.; Witt, A. & Smith, S.D. 1993. “The gust-front detection and wind-shift algorithms for the terminal Doppler weather radar system”. Journal of Atmospheric and Oceanic Technology, 10, 693-709, ISSN: 0739-0572, DOI: 10.1175/1520-0426(1993)010<0693:TGFDAW>2.0.CO;2.
Hon, K.-K. 2018. “Simulated satellite imagery at sub-kilometre resolution by the Hong Kong observatory”. Weather, 73: 139-144, ISSN: 431656, DOI:10.1002/met.1534.
Hon, K.-K. 2020. “Predicting Low-Level Wind Shear Using 200-m-Resolution NWP at the Hong Kong International Airport”. Journal of Applied Meteorology and Climatology, 59: 193-207, ISSN: 1558-8424, DOI:10.1175/JAMC-D-19-0186.1.
Hong, S.-Y.; Dudhia, J. & Chen, S.-H. 2004. “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation”. Monthly Weather Review, 132: 103–120 ISSN: 1520-0493, DOI: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
Hong, S.-Y & Lim, J.-O.J. 2006. “The WRF single–moment 6–class microphysics scheme (WSM6)”. Journal of the Korean Meteorological Society, 42: 129–151, ISSN: 1598-3560, DOI:10.1155/2010/707253.
Hu, X.-M; Nielsen-Gammon, J.W. & Zhang, F. 2012. “Evaluation of three planetary boundary layer schemes in the WRF model”. Journal of Applied Meteorology and Climatology, 49(9): 1831-1844, ISSN: 1558-8424, DOI: 10.1175/2010JAMC2432.1.
Hu, X.-M.; Klein, P.M. & Xue, M. 2013. “Evaluation of the update YSU planetary boundary layer scheme with in WRF for wind resource and air quality assessments”. Journal of Geophysical Research: Atmospheres, 118(8): 10490-10505, ISSN: 0148-0227, DOI:10.1002/jgrd.50823.
Iribarne, J.V. & Godson, W.L. 1981. “Atmospheric Thermodynamics”. In Geophysics and Astrophysics Monographs, 2nd ed.; B.M. McCormac, Ed.; Kluwer Academic Publishers: Boston, MA, USA; pp. 259.
Janjić, Z.I. 2001. “Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model”. NCEP Office Note 437.
Lihui, J.; Baiquan, T.; Xinglong, X. ; Zibo, Z. & Bin, Y. 2012. “Numerical simulations of low attitude wind shear based on Doppler lidar. Infrared Laser”. Infrared and Laser Engineering, 41(7): 1761-1766, ISSN: 1007-2276.
Jolliffe, I. & Stephenson, D. 2003. “Forest Verification: a practitioner’s guide in atmospheric science”. In: John Wiley Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, pp. 37–97.
Lin, Y.-L.; Farley, R.D. & Orville, H.D. 1983. “Bulk parameterization of the snow field in a cloud model”. Journal of Applied Meteorology and Climatology, 22(6): 1065–1092, ISSN: 1558-8424, DOI:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Liu, C. & Moncrieff, M.W. 2007. “Sensitivity of Cloud-Resolving Simulations of Warm-Season Convection to Cloud Microphysics Parameterizations”. Monthly Weather Review, 135(8): 2854-2868, ISSN: 1520-0493, DOI:10.1175/MWR3437.1.
Liu, C.; Ikeda, K.; Thompson, G.; Rasmussen, R. & Dudhia, J. 2011. “High-Resolution Simulations of Wintertime Precipitation in the Colorado Headwaters Region: Sensitivity to Physics Parameterizations”. Monthly Weather Review, 139(11): 3533-53, ISSN: 1520-0493, DOI:10.1175/MWR-D-11-00009.1
Miao, J.F.; Wyser, K.; Chen, D. & Ritchie, H. 2009. “Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics”. Annales Geophysicae, 27(6): 2303-2320, ISSN: 1432-0576, DOI:10.5194/angeo-27-2303-2009.
Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J. & Clough, S.A. 1997. “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave”. Journal of Geophysical Research: Atmospheres, 102(D14): 16663–16682, ISSN: 0148-0227, DOI:10.1029/97JD00237.
Montero, G.; Montenegro, R.; Escobar, J.; Rodríguez, E. & González, J. 2006. “Modelización y simulación numérica de campos de vientos orientados a procesos de contaminación atmosférica”. Instituto Universitario de Sistemas Inteligentes y Aplicaciones numéricas en Ingeniería, Universidad de Las Palmas, Gran Canaria
Morrison, H.; Thompson, G. & Tatarskii, V. 2009. “Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one– and two–moment schemes”. Monthly Weather Review, 137(3): 991–1007, ISSN: 1520-0493, DOI: 10.1175/2008MWR2556.1.
OACI. 2005. “Manual on Low-Level Wind Shear”. Doc 9817 AN/449, pp. 1-8
Otkin, J.A. & Greenwald. T.J. 2008. “Comparison of WRF Model-Simulated and MODIS-Derived Cloud Data”. Monthly Weather Review, 136(6): 1957-70, ISSN: 1520-0493, DOI: 10.1175/2007MWR2293.1.
Pérez-Bello, A.; Mitrani, A.I.; Díaz, R.O.; Wettre, C. & Robert, L. H. 2019. “A numerical prediction system combining ocean, waves and atmosphere models in the Inter-American Seas and Cuba”. Revista Cubana de Meteorología, 25(1): 109–120, ISSN: 2664-0880
Rajeevan, M.; Kesarkar, A.; Thampi, S.; Rao, T.; Radhakrishna, B. & Rajasekhar, M. 2010. “Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over southeast India”. Annales Geophysicae, 28(2): 603–619, ISSN: 1432-0576, DOI: 10.5194/angeo-28-603-2010.
Reisner, J.; Rasmussen, R.M. & Bruintjes, R.T. 1998. “Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model”. Quarterly Journal of the Royal Meteorological Society, 124(548): 1071-107, ISSN: 1477-870X, DOI:10.1002/qj.49712454804
Sánchez, E.O. 2018. Evaluation of the medium-term forecast of the atmospheric component of the SPNOA with data from INSMET meteorological stations. Bachelor Thesis, Higher Institute of Technologies and Applied Sciences, Havana, Cuba, 2018.
Sari, F.P.; Baskoro, A.P. & Hakim, O.S. 2018. “Effect of different microphysics scheme on WRF model: A simulation of hail event study case in Surabaya, Indonesia”. In: Proceedings of the American Institute of Physics Conference, 1987(1), 020002, DOI:10.1063/1.5047287.
Shaw, B.; Spencer, P.; Carpenter, J. & Barrere, J. 2008. “Implementation of the WRF model for the Dubai International Airport aviation weather decision support system”. In: Proceedings of the 13th Conference on Aviation, Range and Aerospace Meteorology, New Orleans, United States of America, 5.2.
Shrestha, R.K.; Connolly, P.J. & Gallagher, M.W. 2017. “Sensitivity of WRF Cloud Microphysics to Simulations of a Convective Storm Over the Nepal Himalayas”. The Open Atmospheric Science Journal, 11(1): 29-43, ISSN: 1874-2823, DOI: 10.2174/1874282301711010029.
Shun, C. M. & Chan, P. W. 2008. “Applications of an infrared Doppler LIDAR in detection of wind shear”. Journal of Atmospheric and Oceanic Technology, 25(5), 637-655, ISSN: 0739-0572, DOI: 10.1175/2007JTECHA1057.1.
Sierra, L.M.; Ferrer, H.A.L.; Valdés, R.; Mayor, Y.; Cruz, R.; Montejo, I.; Rodríguez, C.F.; Rodríguez, N.; Roque, A. 2015. “Automatic mesoscale prediction system of four daily cycles”. Technical Scientific Report. DOI: 10.13140/RG.2.1.2888.1127
Sierra, M.; Borrajero, L.; Ferrer, A.L.; Morfa, Y.; Yordanis, A.; Loyola, M. & Hinojosa, M. 2017. “Sensitivity studies of the SisPI to changes in the PBL, the number of vertical levels and the microphysics and clusters parameterizations, at very high resolution”. Technical Scientific Report. DOI: 10.13140/RG.2.2.29136.00005.
Skamarock, W.C.; Klemp, J.B.; Dudhia. J.; Gill, D.O.; Barker, D.M.; Wang, W. & Power, J.G. 2005. “A description of the advanced research WRF version 2”. NCAR Tech Note NCAR/TN 468 STR, National Center for Atmosferic Research, Boulder, Colo.
Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W. & Power, J.G. 2008. “Description of the Advanced Research WRF Version 3”. NCAR Tech Note NCAR/TN 475 STR, UCAR Communications, Boulder, Colo.
Somos-Valenzuela, M. & Manquehual-Cheuque, F. 2020. “Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (NPI) and Baker River Basin”. Atmósfera, 11(815), 19, ISSN: 0187-6236, DOI:10.3390/atmos11080815.
Sosa, A. 2018. “International Airport “José Martí” low-level wind shear characteristics during 2012-2017 period”. Bachelor Thesis, Higher Institute of Technologies and Applied Sciences, Havana, Cuba.
Srikanth, M.; Satyanarayana, A.N.V. & Rao, T.N. 2014. “Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility. -Case study”. Atmospheric Research, 139: 1-17, ISSN: 0169-8095, DOI: 10.1016/j.atmosres.2013.12.017.
Srinivas, C.V.; Venkatesan, R. & Bagavath Singh, A. 2007. “Sensitivity of mesoscale simulations of land-sea breeze to boundary layer turbulence parameterization”. Atmospheric Environment, 41(12): 2534-2548, ISSN: 1352-2310, DOI: 10.1016/j.atmosenv.2006.11.027.
Storm, B. & Basu, S. 2010. “The WRF Model Forecast-Derived low-level wind shear climatology over the United States Great Plains”. Energies, 3, 258-276, ISSN: 1996-1073, DOI: 10.3390/en3020258.
Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Weigel, J. & Cuenca, R.H. 2004. “Implementation and verification of the unified NOAH land surface model in the WRF model”. In: Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA; 17.5, pp. 11-15.
Urlea, A.-D. & Pietrisi, M. 2015. “Study of the Low Level Wind Shear using AMDAR reports”. EGU General Assembly Conference Abstracts, pp. 2185,
Wilson, W.; Roberts, R.D.; Kessinger, C. & McCarthy, J. 1984. “Microburst wind structure and evaluation of Doppler radar for airport wind shear detection”. Journal of Applied Meteorology and Climatology, 23(6), 898-915, ISSN: 1558-8424, DOI: 10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2.