Air quality evaluation in Mariel Bay using CALPUFF model
Main Article Content
Abstract
Air quality modeling is an important tool to determine the maximum allowable emission rates that will meet air quality standards. This research uses a modeling system composed of a meteorological diagnostic model (CALMET), with an air quality dispersion model (CALPUFF), based on the diagnostic outputs of the Weather Research and Forecasting (WRF) model. This research is aimed to evaluate air quality in Mariel Bay from point sources emissions, by using these models. It is verified the Cuban Air Quality Standard 1020:2014 for carbon monoxide (CO), nitrous oxides (NOx), sulfur dioxide (SO2), and 10 µm particulate matter (PM10) from 5/18/2015 to 5/21/2015. The hourly peak concentrations of PM10 take place over the Mariel community with values of 206 µg/m3 during the day, caused by sea breeze. The hourly concentrations of SO2 exceed 3,9 times the standard, with hourly peak concentration between 800 to 900 µg/m3 during nights and early mornings due to land breeze. Comparison of real data and model-based prediction shows an overestimation of CALPUFF for PM10 due to the absence of meteorological data in the domain and the use of industrial emission values based on estimations.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Dresser, A. L., & Huizer, R. D. (2011). CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited. Journal of the Air & Waste Management Association, 61(6), 647-659. https://doi.org/10.3155/1047-3289.61.6.647
González, J. A., Hernández, A., Rodríguez, A., Saavedra, S., & Casares, J. J. (2015). Surface and upper-air WRF-CALMET simulations assessment over a coastal and complex terrain area. International Journal of Environment and Pollution, 57(3-4), 249-260. https://doi.org/10.1504/IJEP.2015.074509.
Hernández, A., Jáuregui-Haza, U., González, J. A., Casares-Long, J. J., Saavedra-Vázquez, S., Guzmán-Martínez, F., & Torres-Valle, A. (2016). Aplicaciones del modelo lagrangiano de dispersión atmosférica CALPUFF. Revista Ciencias de la Tierra y el Espacio, 17(1), 32-44.
Hernández, A., Reinosa, M., & Hernández, F. (2017). Contaminantes atmosféricos procedentes de centrales azucareros avileños. Universidad & Ciencia, 6(2), 17-26.
Hernández, A., Saavedra, S., Rodríguez, A., Souto, J. A., & Casares, J. J. (2014). Coupling WRF and CALMET models: Validation during primary pollutants glc episodes in an Atlantic coastal region. Air Pollution Modeling and its Application, XXII, 681-684. https://doi.org/10.1007/978-94-007-5577-2_116
Hernández, A., Souto, J. A., Rodriguez, A., Saavedra, S., & Casares, J. J. (2015). Validation of CALMET/CALPUFF models simulations around a large power plant stack. Física de la Tierra, 27, 35-55.
Holzworth, G. C. (1964). Estimates of mean maximum mixing depths in the contiguous United States. Monthly Weather Review, 92(5), 235-242. https://doi.org/10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.
Holzworth, G. C. (1967). Mixing depths, wind speeds and air pollution potential for selected locations in the United States1. Journal of Applied Meteorology and Climatology, 6, 1039-1044. https://doi.org/10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2.
Huang, D., & Guo, H. (2019). Dispersion modeling of odour, gases, and respirable dust using AERMOD for poultry and dairy barns in the Canadian Prairies. Science of The Total Environment, 690, 620-628. https://doi.org/10.1016/J.SCITOTENV.2019.07.010.
INSMET. (2015). Caracterización climática de la zona del montaje de la torre de 180 metros de la Central Eléctrica Máximo Gómez del Mariel. Periodo 2005-2014 (p. 17) [Informe Técnico del Centro Meteorológico Provincial La Habana-Artemisa-Mayabeque].
Levy, J. I., Spengler, J. D., Hlinka, D., Sullivan, D., & Moon, D. (2002). Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: Model sensitivity and implications. Atmospheric Environment, 36(6), 1063-1075. https://doi.org/10.1016/S1352-2310(01)00493-9.
López, C. M. (2006). Introducción a la Gestión de la Calidad del Aire. Instituto de Meteorología.
Maul, P. R. (1980). Atmospheric transport of sulphur compound pollutants [Tesis de Doctorado, Imperial Collage of London.]. https://spiral.imperial.ac.uk/bitstream/10044/1/35253/2/Maul-PR-1980-PhD-Thesis.pdf
Murena, F., Mocerino, L., Quaranta, F., & Toscano, D. (2018). Impact on air quality of cruise ship emissions in Naples, Italy. Atmospheric Environment, 187, 70-83. https://doi.org/10.1016/J.ATMOSENV.2018.05.056
Oyarzún, M. (2010). Air pollution an its effects on health. Revista chilena de enfermedades respiratorias, 26, 16-25. https://doi.org/10.4067/S0717-73482010000100004.
Prieto, F., Benítez, I., Ramos, L. B., & García, A. (2017). Determinación de las emisiones de dióxido de azufre en la termoeléctrica “10 de octubre”. Monteverdia, 10(1), 26-35.
Radonjic, Z., Chambers, D., Telenta, B., & Janjic, Z. (2011). Coupled NMM-CALMET meteorology development for the CALPUFF air dispersion modelling in complex terrain and shoreline settings. Geophysical Research Abstracts, 13(EGU2011), 3729.
Rood, A. S. (2014). Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmospheric Environment, 89, 707-720. https://doi.org/10.1016/J.ATMOSENV.2014.02.054.
Scire, J. S., Robe, F. R., Fernau, M. E., & Yamartino, R. J. (2000). A user’s guide for the CALMET Meteorological Model (p. 332) [Tech. Rep.]. Earth Tech, Inc. http://www.src.com/CALPUFF/download/CALMET_UsersGuide.pdf
Scire, J. S., Strimaitis, D. G., & Yamartino, R. J. (2000). A user’s guide for the CALPUFF dispersion model (p. 521) [Tech. Rep.]. Earth Tech, Inc. http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf
Sierra-Lorenzo, M., Borrajero-Montejo, I., Ferrer-Hernández, A., Hernández-Valdés, Y., Morfa, J., Morejón-Loyola, Y., & Hinojosa-Fernández, M. (2017). Estudios de Sensibilidad del Sispi a Cambios de la pbl, la Cantidad de Niveles Verticales y, las Parametrizaciones de Microfısica y Cúmulos, a muy alta Resolución (Informe de Resultado Científico No. 1; Proyecto: Sistema de Predicción a muy corto plazo basado en el Acoplamiento de Modelos de Alta Resolución y Asimilación de Datos II, p. 26). Instituto de Meteorología.
Sosa, C. (2018). Gestión de la contaminación del aire en un municipio Industrial. Caso de estudio: Mariel. Revista Cubana de Meteorología, 24(1), 75-94.
Souto, J. A., Moral, C., Rodríguez, A., Saavedra, S., Casares, J. J., & Hernández-Garces, A. (2014). Simulation of plume dispersion using different stack configurations and meteorological inputs. International Journal of Environment and Pollution, 55(1-4), 139-147. https://doi.org/10.1504/IJEP.2014.065917.
Turtos, L., Capote, G., Fonseca, Y., Alvarez, L., Gacita, M., Bezanilla, A., Borrajero, I., Meneses, E., & Pire, S. (2013). Assessment of the Weather Research and Forecasting model implementation in Cuba addressed to diagnostic air quality modeling. Atmospheric Pollution Research, 4(1), 64-74. https://doi.org/10.5094/APR.2013.007
Souto, J. A.; Moral, C.; Rodríguez, A.; Saavedra, S.; Casares, J. J. & Hernández-Garces, A. 2014. “Simulation of plume dispersion using different stack configurations and meteorological inputs”. International Journal of Environment and Pollution, 55(1): 139-147, DOI: 10.1504/IJEP.2014.065917.