Estimation of biogenic emissions of volatile organic compounds and carbon monoxide in citrus plantations of Cuba

Main Article Content

Ricardo Manso
Yosdany González
Javier Bolufé
Rosemary López
Israel Borrajero
Juan C. Peláez
Miguel Aranguren

Abstract

The emissions of gases and particles produced by nature have been shaping the current atmosphere, which interact with anthropic emissions, affecting air quality and the climate. The objective of this study was to quantify biogenic emissions in biogenic citrus plantations that could interact with other components and play an important role in the atmosphere. It was possible to have the necessary information to apply the modeling to estimate biogenic emissions in the citrus plantations of Jagüey Grande and Ceiba. The GLoBEIS model was applied with data on the leaf area index and photosynthetically active radiation among other environmental variables, obtained mainly from the Jagüey Grande Base Scientific Technological Unit and from the Institute of Meteorology. Biogenic emissions corresponded almost entirely to emissions of Biogenic Volatile Organic Compounds (99.1%). Emissions of total monoterpenes were 40.45% and other Biogenic Volatile Organic Compounds were 59.53%. The leaf area index has a fundamental weight on the emissions. Approximately 66.25% of biogenic emissions correspond to Jagüey Grande due to its larger cultivation area. The highest emissions of total monoterpenes and other volatile organic compounds corresponded to the periods of higher temperature in the months of July and August and the 1:00 p.m. hours due to the direct influence of this variable. In the case of nitrogen monoxide, emissions show a more homogeneous behavior during the course of the year with an increase from April with maximum values in July and August corresponding to the highest air and soil temperatures. The described methodology can be applied to other crops and plantations.

Downloads

Download data is not yet available.

Article Details

How to Cite
MansoR., GonzálezY., BoluféJ., LópezR., BorrajeroI., PeláezJ. C., & ArangurenM. (2021). Estimation of biogenic emissions of volatile organic compounds and carbon monoxide in citrus plantations of Cuba. Revista Cubana De Meteorología, 27(3). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/573
Section
Original Articles

References

Aranguren, M., Pérez, R. & Rodríguez, D. 2004 Viroid induced changes in the yield components of Persian limes trees (Citrus latifolia Tan). Proc. XXVI IHC-Citrus, Subtropical and tropical Fruit Crops. Eds. L.G. Albrigo and V Galan Sauco. Acta Hort. 632. ISHS 2004. Publication supported by Can.Int.Agency (CIDA)
Aranguren, M. Pérez J. & Pérez Y. 2015 ``Determinación de los índices bioclimáticos y tipo de clima para la vid en las condiciones de Jagüey Grande, Matanzas, Cuba``. Centro agrícola, 42(4). 75-83, octubre –diciembre, 2015 ISSN papel: 0253-5785 ISSN on line: 2072-2001. CF: cag104152054. CE: 68 14 CF: 104152054 Disponible en: http://cagricola.uclv.edu.cu.Centro agrícola, 42(4). 75-83, octubre –diciembre, 2015
Antonelli M., Donelli D., Barbieri G., Valussi M., Maggini V. & F, Firenzuoli 2020. Forest Volatile Organic Compounds and Their Efects on Human Health: A State-of-the-Art Review. International Journal of Environmental Research and Public Health Review. Int. J. Environ. Res. Public Health 2020, 17, 6506; doi: 10.3390/ijerph17186506 www.mdpi.com/journal/ijerph
Bayón P. 2004 Atlas ambiental territorial del municipio Caimito, La Habana, Cuba: apuntes del diagnóstico geoecológico de sus paisajes
Bolaño T.R., Camargo Y. &Vélez-Pereira, A.M. 2015. ``Emisiones biogénicas de monoterpenos en el Parque Nacional Natural Tayrona, Santa Marta (Colombia)``. Revista Luna Azul, 40, 102-116. Recuperado de: http://lunazul.ucaldas.edu.co/ index.php? option=content &task= view&id=1002
Borrajero I. & Pelaez J., 2016 Informes de resultados: Uso del WRF-Solar y el post-procesamiento MOS para el pronóstico de la radiación solar con fines energéticos en Cuba. Estimación de la radiación solar a partir de imágenes de satélite. Proyecto: Pronóstico de la radiación solar y potencia a generar en las plantas fotovoltaicas conectadas a la red eléctrica nacional. Centro de Física de la Atmósfera. INSMET.
Camargo Y., Bolaño T. & Álvarez A. 2010. ``Emisiones de compuestos orgánicos volátiles de origen biogénico y su contribución a la dinámica atmosférica`` Rev. Intropica ISSN 1794-161X 5 77 - 86 Santa Marta, Colombia, mayo de 2010
EPA, 2007. Emissions Modeling Clearinghouse, Biogenic emissions sources. U.S. Environmental Protection Agency. (Disponible en http://www.epa.gov/ttnchie1/emch/biogenic/ - visitado 2010-03-15).
Fares Silvano, Drew R. Gentner c, Jeong-Hoo Park a, Elena Ormeno, John Karlik & Allen H. Goldstein . 2011 ``Biogenic emissions from Citrus species in California`` .Atmospheric Environment 45 ,2011, 4557-4568
Guenther, A.B., R.K. Monson & R. FALL. 1991. ``Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development``. Journal of Geophysical Research 96: 10799-10808.
Guenther A., Hewitt N.C., Erickson D., Fall R., Geron C., Graedel T., Harley P.,Klinger L., Lerdau M., Mckey W.A., Pierce T., Scholes B., Steinbrecher R.,Tallamraju R., Taylor J & Zimmerman P. A.1995. ``Global Modeld Natural Volatile Organic Compound Emissions``. Journal of Geophysical Research Vol 100,NO. D5, pp 8873-8892.
Guenther, A.,C Geron,T Pierce, b Lamp, P Harle &,R Fall . 2000. ``Natural emissions of non-methane volatile organic compounds, carbon monoxide and oxides of nitrogen from North America``. Atmos. Environ. 34: 2205-2230.
Guenther, A., Yarwood G., Wilson& G.,Shepard ,S., 2003. User’s guide to the Global biosphere emissions and interactions system (GLoBEIS3)-Version 3.1. Recuperado de http://www.globeis.com/registration/reg.html
Guenther A.., Jiang X., Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK. & Wang X. 2012 The model of emissions of gases and aerosols from nature version 2.1 (megan2.1):: An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. Discuss. 2012;5(2):1503–1560. doi: 10.5194/gmdd-5-1503-2012. Google Scholar
Guenther A. 2017. Presentación Curso: Emisiones de compuestos orgánicos volátiles Biogénicos (COVB) y su impacto sobre la calidad del aire y el clima. Universidad Nacional de Colombia, sede Manizales (15 al 17 de agosto 2017).
Guyot, G., 1992. Cours de Bioclimatologie. Chapitre: I, Le Rayonnement. Ecole Nationale Superieure Agronomique de Montpellier, France.
Hampel, D., Mosandl, A. &Wust, M., 2005. Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucuscarota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochem- istry 66, 305e311.
Jiang, X., Yang, Z.-L., Liao, H. & Wiedinmyer, C. 2010. ``Sensitivity of biogenic organic aerosols to future climate change at regional scales: An online coupled simulation``. Atmospheric Environment 44, 4891-4907
Lecha L., Paz L. &,Lapinel B. 1994. El Clima de Cuba. Editorial Academia, 1996 pp. La Habana
Ormeño: Elena, Blanca Céspedes, Iván A. Sánchez, Ángel Velasco-García, José M. Moreno, Catherine Fernández & Virginie Baldy. 2009. Forest Ecology and Management 257 (2009) 471–482.
Pérez, M, Aranguren & M. Pérez J., 2003 Bioclimatología. Una herramienta para el desarrollo del cultivo de los cítricos en Cuba y en Las Américas. Ciudad de La Habana: IIFT, 2003. Informe Premio Anual Academia de Ciencias de Cuba, 23 p.
Pérez, J. M.; I. Peña & R. Pérez. 2000. Comparative Viroid Detection of Cuban viroid isolates using indexing and sequential PAGE. Proc.14th Conf. I.O.C.V., Brazil, pp. 302303.
Peñuelas, J. & Llusià, J. 2003. Emisiones biogénicas de COVs y cambio global ¿Se defienden las plantas contra el cambio climático? Revista Ecosistema, vol. XII, N° 1. Disponible en: www.aeet.org/ecosistemas/031/investigacion8.htm)
Pozo, L.; Lima H.; Pérez M. C. & Noriega C. 1994. ``Metodología para la evaluación de números de flores, frutos y área foliar totales en árboles cítricos``. Citrifrut, 1994, vol. 12, no 1-2, pp. 12-14.
RIAC. 2006. Red Interamericana de Cítricos (RIAC) (2006). Bioclimatología. Una herramienta para el desarrollo del cultivo de los cítricos en Cuba y en las Américas. Carta Circular, 2006, no 25, pp. 2-8.
Rigollier, C., Lefevre, M., & Wald, L. 2004. ``The method heliosat-2 for deriving shortwave solar radiation from satellite images``. Solar Energy, 77:159-169, 2004.
Solano. O., Menéndez. C., Vázquez. R, &Jorge Menéndez 2004. ``Zonificación del periodo de crecimiento de la vegetación en Cuba para un año normal``. Revista Cubana de Meteorología /vol. 11/No1/2004
Masuda Tatsuhiko, Junya Hoshi, Sumito Sato, Hiroki Nagashima & Hiroyuki Ueno. 2017. Emission of Biogenic Volatile Organic Compounds from Trees along Streets and in Urban Parks in Tokyo, Japan. Asian Journal of Atmospheric Environment. Vol. 11, No. 1, pp. 29-32, March 2017doi: https://doi.org/10.5572/ajae.2017.11.1.029.ISSN (Online) 2287-1160, ISSN (Print) 1976-6912.
Tingey D, Manning M, Grothaus L, & Burns W. 1980. ``Influence of light and temperature on monoterpene emission rates from slash pine``. Plant Physiology, 65, 797-801.
Velasco, E. 2003. ``Estimates for biogenic non-methanehydrocarbons and nitric oxide emissions in the Valley of Mexico``. Atmospheric Environment, 37, 625-637
Velasco E. & Bernabé, R. 2004; Documento Emisiones Biogénicas.Las Emisiones de compuestos orgánicos volátiles no metano de la vegetación y óxido nítrico del suelo. Erik Velasco y Rosa María Bernabé Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología. ISBN: 968-817-699-0. México 2004.
Weber, F., Kowarik, I. &, Säumel, I. 2014. A walk on the wild side: Perceptions of roadside vegetation beyond trees. Urban Forestry Urban Greening 13, 205-212.
Williams, E.J., A. Gunther. & F. Fehsenfeld. 1992. ``An inventory of nitric oxide emissions in the United State``. Journal of Geophysical Research.97 (D7):7511-7519. 1992