Relation between the increment of thunderstorms and temperature for some stations with complete and unbiased data

Main Article Content

Lourdes Álvarez Escudero
Israel Borrajero Montejo

Abstract

Worldwide studies have stated an increase in atmospheric thunderstorm activity that bears a relation with growing air and sea temperature, along with atmospheric aerosol density. This work aims to analyze the inter annual course of thunderstorms occurrence and surface air temperature for series of observations with adequate degree of completion and lack of bias at meteorological stations in Cuba, over the period from 1989 to 2016. Series of tri hourly Present and Past weather state codes and tri hourly values of surface air temperature at 14 stations were used. Series were subject to nonparametric homogeneity tests and variables were related through the Pearson Correlation coefficient. The relation between the percent of occurrence of thunderstorm observations and variables associated to temperature did not explain the increase in thunderstorm activity.

Downloads

Download data is not yet available.

Article Details

How to Cite
Álvarez EscuderoL., & Borrajero MontejoI. (2021). Relation between the increment of thunderstorms and temperature for some stations with complete and unbiased data. Revista Cubana De Meteorología, 27(2). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/558
Section
Original Articles

References

Álvarez, L; Borrajero, I; Álvarez, R; Aenlle, L; Rivero, I; Iraola, C; Rojas, Y & Hernández, M. 2012. “Estudio de la marcha interanual de la frecuencia de ocurrencia de observaciones con tormenta para el territorio cubano”. Revista de Climatología, 12: 1-21, .
Álvarez-Escudero, L. & Borrajero, I. 2014a. “Análisis de la marcha interanual de fenómenos meteorológicos para las tres estaciones que triangulan la provincia de La Habana, Cuba”. Cienc. Tierra y Esp., 15(1):12 - 22.
Álvarez-Escudero, L.; Borrajero, I. & Barcenas, M. 2014b. “Análisis de la calidad de series largas de registros de código de estado del tiempo presente para las estaciones de Cuba”. Revista Cubana de Meteorología, 20(1): 3 – 9, http://www.insmet.cu/contenidos/biblioteca/revistas/2014/n1/1.pdf.
Álvarez-Escudero, L.; Borrajero, I. & Barcenas, M. 2014c. “Análisis de la marcha interanual de fenómenos determinados por el código de tiempo presente para las estaciones de Cuba”. Revista Cubana de Meteorología, 20(2): 56 – 69, http://www.insmet.cu/contenidos/biblioteca/revistas/2014/n2/6.pdf.
Álvarez-Escudero, L., Borrajero-Montejo, I., Peláez-Chávez, J. C. 2019. "Relación entre el crecimiento de tormentas, la temperatura y los aerosoles para la estación Casablanca". Revista Cubana de Meteorología, 25(3): 404-411, ISSN: 2664-0880, http://rcm.insmet.cu/index.php/rcm/article/view/486/756
Boccippio, D. J.; Goodman, S.J. & Heckman, S. 2000. “Regional differences in tropical lightning distributions”. J. Appl. Met. 39: 2231–2248.
Cecil, D. J.; Buechler, D. E. & Blakeslee, R. J. 2014. “Gridded lightning climatology from TRMM-LIS and OTD: Dataset description”. Atmos. Res., 135–136: 404–414, DOI:10.1016/j.atmosres.2012.06.028.
Cecil, D. J.; Buechler, D. E. & Blakeslee, R. J. 2015. “TRMM LIS Climatology of Thunderstorm Occurrence and Condicional Lightning Flash Rates”. Journal of Climate, 28: 6536 – 6547, DOI: 10.1175/JCLI-D-15-0124.1
Christian, H. J.; Blakeslee, R. J.; Boccippio, D. J.; Boeck, W. L.; Buechler, D. E.; Driscoll, K. T.; Goodman, S. J.; Hall, J. M.; Koshak, W. J.; Mach, D. M. & Stewart, M. F. 2003. “Global frequency and distribution of lightning as observed from space by the optical transient detector”. J. Geophys. Res, 108(D1), 4005, DOI:10.1029/2002JD002347.
Collier, A. B.; Bürgesser, R. E. & Ávila, E .E. 2013. “Suitable regions for assessing long term trends in lightning activity”. J. Atmos. Sol-Terr. Phys., 92: 100–104, DOI:10.1016/j.jastp.2012.10.012.
Declan, L., F.; Doherty, R. M.; Oliver Wild, O.; Stevenson, D. S.; MacKenzie, I. A. & Blyth, A. M., 2018. “A projected decrease in lightning under climate change”. Nature Climate Change Letters, DOI:10.1038/s41558-018-0072-6
De Pablo, F. & Rivas Soriano, L. 2002. “Relationship between cloud-to-ground lightning flashes over the Iberian Peninsula and sea surface temperature”. Quart. J. Roy. Met. Soc. 128: 173–183.
DeRubertis, D. 2006. “Recent Trends in Four Common Stability Indices Derived from U.S. Radiosonde Observations”. Journal of Climate, 19: 309-323.
Lay, E. H.; Jacobson, A. R.; Holzworth, R. H.; Rodger, C. J. & Dowden R. L. 2007. “Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network”. J. Geophys. Res., 112, D13111.
Lolis, C.J. 2007. “Climatic features of atmospheric stability in the Mediterranean region (1948-2006): spatial modes, inter-monthly and inter-annual variability”. Meteorol. Appl, 14: 361-379.
Middey, A. & Kaware, P. B. 2016. “Disposition of Lightning Activity Due to Pollution Load during Dissimilar Seasons as Observed from Satellite and Ground-Based Data”. Climate, 4, 28, DOI:10.3390/cli4020028
Naccarato, K. P.; Pinto Jr., P. & Pinto, I.R.C.A. 2003. “Evidence of thermal and aerosol effects on the cloud-to- ground lightning density and polarity over large urban areas of Southeastern Brazil”. Geophys. Res. Lett. 30 (13).
Orville R. E.; Huffines, G. R.; Burrows, W. R.; Holle, R. L. & Cummins, K. L. 2002. “The North American Lightning Detection Network (NALDN)—First Results: 1998–2000”. Monthly Weather Review, 130: 2098 – 2109.
Pal, J.; Chaudhuri, S.; Chowdhury, A. R. & Bandyopadhyay, T. 2016. “Cloud - Aerosol Interaction during Lightning Activity over Land and Ocean: Precipitation Pattern Assessment”. Asia-Pac. J. Atmos. Sci., 52(3): 251-261, DOI:10.1007/s13143-015-0087-0
Price, C. 2000. “Evidence for a link between global lightning activity and upper tropospheric water vapour”. Nature, 406: 290–293.
Price, C. & Asfur, M. 2006. “Can Lightning Observations be Used as an Indicator of Upper-Tropospheric Water Vapor Variability?”. BAMS, 8(3): 291-298, DOI:10.1175/BAMS-87-3-291
Reeve, N. & Toumi, R. 1999. “Lightning activity as an indicator of climate change”. Quart. J. Roy. Met. Soc., 125: 893–903.
Sneyers, R. 1990. On the statistical analysis of series of observations. Technical Note No. 143, WMO-No. 415, 192 pp.
Valentí Pía, M. D.; De la Torre, L. & Añel, J. A. 2011. “Tendencias en la probabilidad de tormentas en el Suroeste de Europa”. ACT, 2: 97- 104
Villarini, G. & Smith, J. A. 2013. “Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1909 –2010”. Atmos. Res., 124: 137–148, DOI:10.1016/j.atmosres.2012.12.017.
Virts, K. S.; Wallace, J. M.; Hutchins, M. L. & Holzworth, R. H. 2013. “Highlights of a New Ground-Based , Hourly Global Lightning Climatology”. Bull. Amer. Meteor. Soc., 15: 1381 -1391, DOI:10.1175/BAMS-D-12-00082.1.
Williams, E.R. 2005. “Lightning and climate: A review”. Atmospheric Research, 76: 272–287, DOI: 10.1016/j.atmosres.2004.11.014
WMO. 1988. Manual on codes. WMO – No. 306, Volume 1, Seccion D, Table 4677.
Yuan, T., L.; Remer, A.; Pickering, K. E & Yu H. 2011. “Observational evidence of
aerosol enhancement of lightning activity and convective invigoration”. Geophys. Res. Lett., 38, L04701, doi:10.1029/2010GL046052.
Zhao, P.; Zhou, Y.; Xiao, H.; Liu, J.; Gao, J. & Ge, F. 2017. “Total Lightning Flash Activity Response to Aerosol over China Area”. Atmosphere, 8, 26, DOI:10.3390/atmos8020026

Most read articles by the same author(s)