Estimation of atmospheric pollutant emissions at the "José Martí" International Airport.

Main Article Content

Kaili de la Caridad Pérez Tabares
Osvaldo A. Cuesta Santos
Idalys González Chacón
Yosdany González Jaime

Abstract

The atmospheric pollution is one of the environmental problems with the greatest risk to health in the world; the emission of pollutants into the atmosphere has been exacerbated mainly by the development of industries, causing a deterioration in air quality worldwide. One of the main concerns of International Civil Aviation is the protection of the Environment, for this reason, airports find it necessary to register an inventory of emissions from air operations. This research focuses on estimating the emissions of atmospheric pollutants from the "José Martí" International Airport in the period 2017-2019. The emissions of the pollutants CO2, CO, NOX, HC, SO2 and total suspended particles (TSP) were obtained through the calculation of the take-off and landing cycles of all the aircraft, which operated during the study period, and the identification of their emission factors. Through the AERMOD Model System, the behavior of annual, daily and hourly concentrations was obtained to characterize the dispersion of pollutants and the areas most affected by emissions. The most relevant results showed that the substance that airplanes emit the most is CO2, while NO2 is the one that most times exceeds the maximum allowable concentration. The highest concentrations were found on the axis of the airport runway.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pérez TabaresK. de la C., Cuesta SantosO. A., González ChacónI., & González JaimeY. (1). Estimation of atmospheric pollutant emissions at the "José Martí" International Airport. Revista Cubana De Meteorología, 27(1). Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/553
Section
Original Articles

References

AIP-CUBA. 2017. AD 2. Aeródromos. Publicación de información aeronaútica. La Habana, Cuba: Empresa Cubana de Navegación Aérea. Available: , [Consulted: March 4, 2020]
Batulé, L. 2012. Modelación de la dispersión de los contaminantes atmosféricos emitidos por la Antillana de Acero. Estudio de caso: Cotorro. Trabajo de Grado, La Habana, Cuba: Universidad de la Habana, 94 p.
Coppa, M., Tomassini, N., D´Iorio, J., & Di Bernardi, A. 2013. Cálculo de aporte contaminante gaseoso en los principales aeropuertos y rutas argentinas. Buenos Aires, Argentina.: Cuarto Congreso de la Red Iberoamericana de Investigación en Transporte Aéreo. Available: , [Consulted: April 4, 2020]
Cuesta, O., Collazo, A., González, Y., Carrillo, E., Sosa, C., Sánchez, P., Manso, R., López, R. 2016. Análisis de las emisiones atmosféricas de las fuentes fijas de La Habana. Revista Cubana de Meteorología, 22(1): 81-93, ISSN: 0864-151X. Available: , [Consulted: March 2, 2020]
Cuesta, O., Wallo, A., Montes, L., Pierra, A., & Tricio, V. 2010. Calidad del aire en zonas urbanas de Cuba. La Habana, Cuba: Décimo Congreso Nacional del Medio Ambiente. Available: , [Consulted: March 23, 2020]
EEA. 2017. EMEP/EEA air pollutant emission inventory guidebook 2016. Available: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016, [Consulted: January 15, 2020]
EPA. 2004. AERMOD: Description of Model Formulation. EPA-454/R-03-004, Office of Air Quality Planning and Standards. Carolina del Norte, Estados Unidos. Available: , [Consulted: March 21, 2020]
González, Y. 2016. Pronóstico de dispersión de contaminantes atmosféricos a escala local utilizando el sistema de modelos AERMOD. Tesis de Maestría. La Habana, Cuba: Universidad de La Habana.
Gryning, S., Batchnova, E., Brummer, B., Jorgensen, H., & Larsen, S. 2007. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Springer Science+Business Media, 124: 251-268, DOI 10.1007/s10546-007-9166-9. Available: , [Consulted: March 12, 2020]
Guevara, M. 2010. Inventario de emisiones atmosféricas de puertos y aeropuertos de España para el año 2008. Trabajo de Grado. Barcelona, España: Escuela Técnica Superior de Ingeniería Industrial de Barcelona. Available: , [Consulted: March 28, 2020]
IACC. 2007. RAC 16 Gestión Ambiental (Segunda ed.). La Habana, Cuba. Available: , [Consulted: March 10, 2020]
IACC. 2013. Política y Estrategia Ambiental. La Habana, Cuba. Available: , [Consulted: April 5, 2020]
IPCC. 1999. Informe Especial del IPCC. La Aviación y la Atmósfera Global. Grupo Intergubernamental de Expertos sobre el Cambio Climático. Available: , [Consulted: March 2, 2020]
Lee, D., Fahey, D., Forster, P., Newton, P., Wit, R., Lim, L., Owen, B., & Sausen, R. 2008. Aviation and global climate change in the 21st century. Atmospheric Environment, 43: 3520-3537, DOI: 10.1016/j.atmosenv.2009.04.024. Available: , [Consulted: April 29, 2020]
ONN. 2004. NC 111:2004 Calidad del aire - Reglas para la vigilancia de la calidad del aire en asentamientos humanos. 1st ed., La Habana, Cuba. Available: , [Consulted: March 17, 2020]
ONN. 2014. NC 1020: 2014 Calidad del aire - Contaminantes - Concentraciones máximas admisibles y valores guías en zonas habitables. 1st ed., La Habana, Cuba. Available: , [Consulted: March 6, 2020]
Urbaneja, L. 2016. Estimación de emisiones de los ciclos de aterrizajes y despegues de aeronaves en el aeropuerto Adolfo Suárez Madrid-Barajas. (Trabajo de Grado). Escuela Técnica Superior de Ingenieros Industriales, Madrid, España. Available: , [Consulted: March 23, 2020]