Stability behavior and the atmospheric mixing height layer in Santa Lucia
Main Article Content
Abstract
Downloads
Article Details
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Batchvarova, E.;Gryning, S. E. 1991.Applied model for the growth of the daytime mixed layer. Boundary Layer Meteorology, 56: 261-274.
EPA. 1995. User’s Guide for the Industrial Source Complex (ISC3) Dispersion Models,42 p., EPA-454/B-95-003a.
EPA. 2004. AERMOD. Description of model formulation, 91 p., EPA-454/R-03-004.
Gill, A. E. 1982. Atmospheric-Ocean Dynamics. Academic Press, 54 p.
González, Y. 2013. MLHASC Mixing Layer Heigth and Atmospheric Stability Condition. Instituto de Meteorología (INSMET), La Habana, Cuba.
Gryning, S. E. et al. 2007.On the extension of the wind over homogeneous terrain beyond the surface layer. Boundary-Layer Meteorology, 24: 251-262.
Hayes, S. R.;Moore, G. E. 1986. Air quality model performance: a comparative analysis of 15 model evaluation studies. Atmospheric Environment, 20: 1897-1911.
Izumi, Y. 1971. Kansas 1968 Field Program Data Report. No. 379, AFCRL-72-0041, Air Force Cambridge Research Laboratory, Bedford, MA, 79 p.
Monin, A. S.;Obukhov M. 1954. Basic laws of turbulent mixing in the ground layer of the atmosphere. Akad. Nauk. SSSR, Geofiz. Inst. Tr., 151:163-187.
Nieuwstadt, F. T. M.;Dop H. Van. 1982.Atmospheric Turbulence and Air Pollution Modelling. Reidel, 35 p.
PasquilL, F. 1961. The estimation of the dispersion of wind-borne material. Meteorological Magazine, 90: 33-49.
Pasquill, F.;Smith F. R. 1983. Atmospheric Diffusion. John Wiley and Sons Inc., New York, 440 p.
Rodríguez, D. 2007. Sistema Automatizado de Gestión de Información de Fuentes Contaminantes (SAGIFC). Publicación electrónica del IV Congreso Cubano de Meteorología.La Habana, Centro de Convenciones Capitolio, Cuba, pp. 7-18,ISBN: 978-959-7167-12-9.
Rodríguez, D.; Echevarria, L.; Cuesta, O.; Sánchez, A.; Díaz, J. M.; Vargas, R. 2008. Resultados preliminares de cálculo de la altura de la capa de mezcla a través del uso del Global Forescast System. Convención Trópico 2008, pp. 59-71, ISBN: 978-959-282-079-1.
Rodríguez, D.; Echevarria, L.; Sánchez, A.; Cuesta, O. 2012ª.Estudio de variables meteorológicas secundarias que intervienen en la difusión de contaminantes atmosféricos. Caso de estudio ciudad de Pinar del Río. Revista Cubana de Meteorología, 18(1): 35-50.
Rodríguez, D.; Echevarria, L.; Sánchez, A.; Cuesta, O.; Gato, A. L. 2012b. Estudio de variables meteorológicas secundarias que intervienen en la difusión de contaminantes atmosféricos. Caso de estudio la comunidad de Santa Lucía. Revista Cubana de Meteorología, 18(2): 77-92.
Rodríguez, D.; Arely, Q.; González, Y.; Cuesta, O.; Sánchez, A. 2015.Variación de la estabilidad y altura de la capa de mezcla en la ciudad de Pinar del Río: su relación con condiciones sinópticas. Revista Brasileira de Meteorología, 30(1): 1 - 15.
Smith, M. E. 1984. Review of the attributes and performance of 10 rural diffusion models. Bulletin of the American Meteorological Society, 65: 554-558.
Thomson, D. J. 2000. The meteorological input module, ADMS 3 Technical Specification. Cambridge Environmental Research Consultants, 116 p.
Turner, D. B. 1964. A difusión model for an urbana rea. Journal of Applied Meteorology, 3: 83-91.
Turtós, L.; Roque, A.; Soltura, R.; Sánchez, M. 2003. “Metodología de estimación de variables meteorológicas secundarias para modelos de dis persión de contaminantes atmosféricos”. Contri bución a la Educación y la Protección Ambiental, pp. 32-45, ISBN: 959-7136-20-1: 266-277.
Turtós, L.; Rivero, J.; Curbelo, L.; Gácita, M. S.; Meneses, E.; Díaz,N. 2009.Method for the estimation of the convective mixing height aimed to atmospheric local dispersion modeling. Aprobado para publicar como capítulo del libro “Environmental Impact Assessments.”, ISBN: 978-1-60692-667-3, Nova Science Publishers, Inc.
Turtós, L. 2012. Implementación de modelos refinados de dispersión local de contaminantes atmosféricos emitidos por fuentes estacionarias. Tesis en opción al grado de Doctor en Ciencias Meteorológicas, Instituto de Meteorología, La Habana, 162 p.
Venkatram, A. 1988. Dispersion in the stable boundary layer. Lectures on Air Pollution Modeling. Journal of Climate, 1: 229-265,
Venkatram, A.; Wyngaard, J. C. 1988. Lectures on Air Pollution Modeling. Journal of Climate, 390 p.
Weil, J. C. 1988. Dispersion in the convective boundary layer. Lectures on Air PollutionModeling. Journal of Climate, 1: 167-227.
Weil, J. C. 1985. Updating applied diffusion models. Journal of Applied Meteorology, 24(11): 1111-1130.