Quantitative precipitation forecast correction using neural network
Main Article Content
Abstract
Downloads
Article Details
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Buhigas, J. 2018. Todo lo que necesitas saber sobre TensorFlow, la plataforma para Inteligencia Artificial de Google. Puentes Digitales. [Online] 2 14, 2018. [Cited: 3 2018, 20.] https://puentesdigitales.com/author/javierbuhigas/ .
Castillo, E., et al. 1999. An Introduction to Functional Networks with Applications. Boston: s.n., 1999.
Cofiño, A. S., Gutirrez, J. M. and Ivanissevich, M. L. 2004. Evolving modular networks with genetic algorithms. Application to nonlinear time series. 2004.
Cybenko, G. 1989. Aproximation by supperpositions of a sigmoidal function. 1989. pp. 203-314.
Grell, G.A. and Freitas, S. R. 2013. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. 2013. pp. 23845-23893.
Gutierrez, J. M., et al. 2004. Redes Probabilísticas y Neuronales en las Ciencias Atmosféricas. Instituto Nacional de Meteorología, Universidad de Cantabria: s.n., 2004.
Haykin, S. 1998. Neural Networks: A Comprehensive Foundation. 2, 1998.
Hidalgo, H. G., Dettinger, M. D. and Cayan, D. R. 2008. Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States. Report, 2007-027, California Climate Change Center. Program California Energy Commission : Public Interest Energy Research (PIER), 2008, p. 48.
Hsieh, W. W. and Tang, B. 1998. Applying neural network models to prediction and data analysis in meteorology and oceanography. 1998. pp. 1855-1870.
Manual del WRF. 2004. Mesoscale & Microscale Meteorology Division, ARW Version 3 Modeling System User’s Guide. Complementary to the ARW Tech Note. Colorado, USA: NCAR: Boulder, 2004, p. 411.
Sanaz, M. 2015. Bias Correction of Global Circulation Model Outputs Using Artificial Neural Networks. Instituto de Tecnología de Georgia: s.n., 2015.
Schizas, C. N., Pattichis, C. S. and Michaelides, S.C. 1994. Artificial neural networks in weather forecasting. 1994. pp. 219-230.
Sierra, L. M., et al. 2014. Sistema de Predicción a muy corto plazo basado en el Acoplamiento de Modelos de Alta Resolución y Asimilación de Datos. 2014.