A numerical prediction system combining ocean, waves and atmosphere models in the Inter-American Seas and Cuba

Main Article Content

Alexis Pérez-Bello
Ida Mitrani-Arenal
Oscar O. Díaz-Rodríguez
Cecilie Wettre
Lars Robert Hole

Abstract

The feasibility of an operational near-real-time forecasting system to simulate the ocean-atmosphere behaviour for the Inter-American Seas and Cuba is presented. The modelling system includes the combination of the WRF atmospheric model, the Wavewatch III and SWAN wave models and the ROMS hydrodynamic model. The main atmospheric and oceanic variables are predicted twice per day for up to 72 hours. WRF initial and boundary conditions are supplied by the GFS global atmospheric model outputs with a resolution of 1/2 degree. Ocean boundary conditions are derived from the HYCOM global ocean model outputs with 1/12 degrees of spatial resolution and the tidal data used is obtained from the Oregon State University global model of oceanic tides TPXO7. Results from WRF were used as atmospheric forcing to run the wave and ocean models. To validate the forecast results, real-time monitoring data from NDBC (National Data Buoy Center) and Cuban weather stations for 2013 were used. Results show a reasonably good performance of the system developed. This operational modelling system was originally developed for the National Meteorological Service but it also provides forecasts for public services.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pérez-BelloA., Mitrani-ArenalI., Díaz-RodríguezO. O., WettreC., & HoleL. R. (2019). A numerical prediction system combining ocean, waves and atmosphere models in the Inter-American Seas and Cuba. Revista Cubana De Meteorología, 25(1), 109-120. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/459
Section
Original Articles

References

B.S. Powell, A.M. Moore, H.G. Arango, E. Di Lorenzo, R.F. Milliff, R.R. Leben . Near real-time ocean circulation assimilation and prediction in the Intra-Americas Sea with ROMS. Dynamics of Atmospheres and Oceans 48 (2009) 46-68.
Battjes, J.A., Janssen, J.P.F.M., 1978. Energy loss and set-up due to breaking of random waves. In: Proceedings of 16th International Conference on Coastal Engineering, ASCE, pp. 569-587.
Booij, N., R.C. Ris and L.H. Holthuijsen, 1999, A third-generation wave model for coastal regions, Part I, Model description and validation, Journal of Geophysical Research,C4, 104, 7649-7666.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569-585.
Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2011: Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Modelling, 49-50, 1-21.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model,J. Atmos. Sci., 46, 3077-3107.
Egbert, G., Erofeeva, S., 2002. Efficient inverse modeling of barotropic ocean tides, Journal of Atmospheric and Oceanic Technology 19, 183-204.
Fairall C. W., Bradley E. F., Rogers D. P., Edson J. B., Young G. S. (1996) Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. Journal of Geophysical Research, Vol. 101, NO. C2, Pages 3747-3764.
Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Climate 16:571-591.
Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Mueller, D. J. Olbers, K. Richter, W. Sell and H. Walden, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A(8), 12, 95 pp.
Hasselmann, S. and K. Hasselmann, 1985a: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, Part I A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15, 1369-1377.
Hasselmann, S ., K. Hasselmann , J. H. Allender and T. P. Barnett, 1985b: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, Part II: parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, 1378-1391.
IOC, IHO and BODC, 2003. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, U.K.
Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes, Mon. Wea. Rev., 122, 927-945.
Janjic, Z. I., 1996: The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 19-23 August; Amer. Meteor. Soc., Boston, MA, 354-355.
Janjic, Z. I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note, No. 437, 61 pp.
Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model and its application in convective parameterization,J. Atmos. Sci., 47, 2784-2802.
Kain, J. S ., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritcsh scheme,The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246 pp.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update.J. Appl. Meteor.,43, 170-181.
Komen, G.J., Hasselmann, S ., Hasselmann, K ., 1984. On the existence of a fully developed windsea spectrum. Journal of Physical Oceanography 14, 1271-1285.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model.J. Climate Appl. Meteor., 22, 1065-1092.
Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems.Rev. Geophys. Space Phys., 20, 851-875.
Mitrani Arenal, I., Borrajero Montejo, I., Bezanilla Morlot, A., 2006. Rainfall forecasting in Cuba for hurricanes Charley and Iván using MM5V3. IAHS Publication 308 201-206.
Mitrani I., Y. Alonso, I. Borrajero, A. Bezanilla, D. Martínez, 2011 Predicción del oleaje en presencia de los huracanes “Iván” y “Paloma”, mediante el uso de la combinación de los modelos numéricos MM5V3-WW3, Revista Cubana de Meteorología, 17, 2, 39-48.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave.J. Geophys. Res., 102(D14), 16663-16682.
Monin, A.S. and A.M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere.Contrib. Geophys. Inst. Acad. Sci., USSR, (151), 163-187 (in Russian).
Penven P., L. Debreu, P. Marchesiello , and J.C. McWilliams, 2006 : Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system. Ocean Modelling, 12, 157-187.
Penven P ., P. Marchesiello , L. Debreu, and J. Lefevre, 2007 : Software tools for pre- and post-processing of oceanic regional simulations. Environ. Model. Softw., 23, 660-662.
Pérez A., Ida Mitrani (2013) Pronóstico numérico del oleaje en mares interamericanos y costas de Cuba, mediante los modelos numéricos MM5, WW3 y SWAN, Vol. 19 No.1, 2013.
Shchepetkin, A. F., and J. C. McWilliams, 2005. The Regional Ocean Modeling System: A split-explicit, free-surface, topography following coordinates ocean model, Ocean Modelling, 9, 347-404.
Skamarock, W., J. Dudhia , D.O. Gill, D.M. Barker, M.G. Duda, X-Y. Huang, W. Wang and J.G. Powers, A, 2008. Description of the Advanced Research WRF version 3, NCAR Technical Note TN- 475+STR, NCAR, Boulder, Colorado.
Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.,106, 7183-7192, 2001.
Tolman, H. L. and D. V. Chalikov, 1996: Source terms in a third-generation wind-wave model. J. Phys. Oceanogr., 26, 2497-2518.
Tolman, H. L ., 2002a: User manual and system documentation of WAVEWATCH-III version 2.22. NOAA / NWS / NCEP / MMAB Technical Note 222, 133 pp.
Tolman, H. L., 2002b: Distributed memory concepts in the wave model WAVEWATCH III. Parallel Computing, 28, 35-52.
Warner, J.C., Armstrong, B., He, R., Zambon, J.B., 2010. Development of a Coupled Ocean-Atmosphere- Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling 35, 230-244. doi:10.1016/j.ocemod.2010.07.010
Zilitinkevich, S., 1995. Non-local turbulent transport pollution dispersion aspects of coherent structure of convective flows. Air Pollution III, Air pollution theory and simulation (H Power, N Moussiopoulos, CA Brebbia, eds) Computational Mechanics Publ, Southampton, Boston 1, 53-60.