Mountain waves in zones of the Sierra de la Gran Piedra, Cuba

Main Article Content

Celia Margarita Álvarez-Suau
Yordan Gallardo-Avilés

Abstract

A preliminary study of internal gravity waves (mountain) focused on the Sierra Gran Piedra, specifically on the hill of La Africana, where a diagnosis of the wind field was made in complex orography interpolated consonants of the atmosphere and data from the Archives of the Laboratory of Air Resources (ARL, acronym in English). These surveys were analyzed with the Integral System for the Analysis of Aerological Surveys (SIASA). Knowing the presence of this meteorological phenomenon is very useful for the development of activities of great socioeconomic interest in mountainous areas, such as tourism, sports, air traffic and planting seeding of orographic clouds. Therefore, the necessary conditions for the formation of the waves and their effects were investigated, among them, the atmospheric turbulence, third cause of meteorological accidents and the influence exerted by this meteorological phenomenon in the distribution of the precipitations. The presence of mountain waves in the study region was detected by means of a high resolution numerical model, which includes the effects caused by the complexity of the terrain, the Froude number and the Duct Factor, internationally used indicators. The results showed wave activity through the numerical simulations and the SIASA with the number of Froude around one and positive values of the Duct Factor favorable for wave propagation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Álvarez-SuauC. M., & Gallardo-AvilésY. (2019). Mountain waves in zones of the Sierra de la Gran Piedra, Cuba. Revista Cubana De Meteorología, 25(1), 10-37. Retrieved from http://rcm.insmet.cu/index.php/rcm/article/view/451
Section
Original Articles

References

Administración Nacional Oceánica y Atmosférica NOAA, 1970, Air Resources Laboratory Data Archive, disponible: Administración Nacional Oceánica y Atmosférica NOAA, 1970, Air Resources Laboratory Data Archive, disponible: http://www.arl.noaa.gov/READYamet.php . (Mayo 9, 2015)
Altitude.nu, disponible: nu, disponible: http://www.altitude.nu/ (Abril 23, 2015)
Clark, T., Hall, W. & Banta, R., 1994. “Two and three dimensional simulations of the 9 January 1989 severe Boulder windstorm”: comparison with observations. Journal of the Atmospheric Sciences 51, 2317-2343.
Doyle, J., Durran, D., 2002. “The dynamics of mountain wave induced rotors”. Journal of the Atmospheric Sciences 59, p186. 16p.
Doyle, J., Volkert, H., Dörnbrack, A., Hoinka, K. & Hogan, T., 2002. “Aircraft measurements and numerical simulations of mountain waves over the central Alps”: A pre-MAP test case. RMetS 128, 2175-2184.
Gaffin, D., 1999. “Wake Low Severe Wind Events in the Mississippi River Valley”: A Case Study of Two Contrasting Events. American Meteorological Society Journals online 14, 581-603.
Gaffin, D., Parker, S. & Kirkwood, P., 2003: “An Unexpectedly Heavy and Complex Snowfall Event across the Southern Appalachian Region”. WAF 18.224-235.
Gallardo, Y., García, Y., Jiménez, L. & Álvarez, C. 2017. Software Sistema de Análisis de Sondeos Aerológicos (SIASA). Versión 1, (LINUX), Python, Cuba.
Garvert, M., Smull, B. & Mass, C., 2007. “Multiscale mountain waves influencing a major orographic precipitation event”. American Meteorological Society Journals Journals.
Koch, S., O’Handley, C., 1997. “Operational forecasting and detection of mesoscale gravity waves”. Weather and Forecasting 12, 253-281.
Koch, S. E. & Saleeby, S. 2001. An automated system for the analysis of gravity waves and other mesoscale phenomena. Weather and Forecasting , 16, 661-679.
Koletsis, I., Lagouvardos, K., Kotroni, V., & Bartzokas, A., 2009. “Numerical study of a downslope windstorm in Northwestern Greece”. Atmospheric Research 94, 178-193.
Lilly, D., 1978. A Severe Downslope Windstorm and Aircraft Turbulence Event Induced by a Mountain Wave. AMS 35, 59-77.
Lindzen, R. A., 1990. Dynamics in atmospheric physics, Cambridge University Press. ed. Cambridge, 324 p, Available: https://books.google.es
Lindzen, R., Tung, K., 1976. “Banded convective activity and ducted gravity waves. Monthly Weather Review”. American Meteorological Society Journals online 104, 1602-1617.
Linés, A., n.d. Geographicalia. 1982, No 13-16 - Dialnet [WWW Document]. URL URL https://dialnet.unirioja.es/ejemplar/6454 (accessed 4.2.17).
Lozano, M., WRF simulation of the atmospheric conditions in some aircraft accidents. Tesis presentada en opción al título de Ingeniero en Técnica Aeronáutica, especialidad Aeronavegación, Escola d'Enginyeria de Telecomunicació Aerospacial de Castelldefels, Universitat Politècnica de Catalunya, 2013
Moreno, M., Gil, M., 2003. “Análisis de la siniestralidad aérea por causa meteorológica (1970-1999)”. Investigaciones Geográficas, 30, 7-25. https://doi.org/10.14198/INGEO2003.30.06
Morfa, Y. A. Modelo numérico 3D para el pronóstico inmediato a escala Meso-

Most read articles by the same author(s)