Evaluación de esquemas de microfísica del wrf-arw en el pronóstico de cizalladura del viento a bajo nivel durante tormentas convectivas en el Areropuerto Internacional José Martí

Contenido principal del artículo

Patricia Coll-Hidalgo
Albenis Pérez-Alarcón
Pedro Manuel González-Jardines
Carlos Manuel Góngora-González
Arlett Díaz-Zurita

Resumen

Se realizó un estudio de sensibilidad para los esquemas de microfísica de Lin, Morrison 2- moment, WSM5 y WSM6 utilizando el modelo Weather Research and Forecasting (WRF) para el pronóstico numérico de la cizalladura del viento en niveles bajos (LLWS) vinculado a tormentas convectivas en Aeropuerto Internacional "José Martí". Como casos de estudio, se seleccionan cuatro tormentas convectivas asociadas con diferentes patrones sinópticos y, por lo tanto, diferentes mecanismos de formación. Además, se aplicó el modelo de masa consistente para reducir la influencia de los obstáculos en la pista durante la interpolación del campo de viento. Se desarrolló inicialmente una evaluación de la configuración del modelo, para las variables en superficie: temperatura, presión atmosférica, humedad relativa y precipitación. Los esquemas no mostraron diferencias significativas, pero la humedad relativa presentó los peores resultados. El mejor desempeño para el pronóstico de precipitación se obtuvo con WSM5 en el periodo lluvioso (mayo-octubre) y Lin en el poco lluvioso (noviembre-abril). Los resultados revelan que la concentración de partículas de cada tipo de hidrometeoro resuelto por las microfísicas en estudio, repercute en los perfiles verticales de viento durante las tormentas. En general, WSM5 y Lin resultaron los esquemas de microfísica más hábiles en el modelo WRF para predecir la cizalladura del viento en niveles bajos en la región de estudio, pero se requieren más estudios para generalizar nuestros hallazgos.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Coll-HidalgoP., Pérez-AlarcónA., González-JardinesP. M., Góngora-GonzálezC. M., & Díaz-ZuritaA. (2022). Evaluación de esquemas de microfísica del wrf-arw en el pronóstico de cizalladura del viento a bajo nivel durante tormentas convectivas en el Areropuerto Internacional José Martí. Revista Cubana De Meteorología, 28(3). Recuperado a partir de http://rcm.insmet.cu/index.php/rcm/article/view/645
Sección
Artículos Originales

Citas

Benjamin, S.G.; Weygandt, S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smrinova, S.; Olson, J..; James, E.P.; Dowell, D.C.; Grell, G.A.; Lin, H.; Peckham, S.E.; Smith, T.L.; Moninger, W.R.; Kenyon, J.S.; Manikin, G. 2016. “A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh”. Monthly Weather Review, 144: 1669-1694, ISSN: 1520-0493, DOI:10.1175/MWRD-D-15-02421.
Boadh, R. & Satyanarayana, A.N.V. 2016. “Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for their application to air pollution dispersion modeling over a tropical station”. Atmósfera, 29(1): 61-81, ISSN: 0187-6236, DOI:10.20937/ATM.2016.29.01.05.
Boilley, A.; Mahouf, J.-F. & Lac, C. 2008. “High resolution numerical modeling of low level wind-shear over the Nice-Côte d’Azur Airport”. In: 13th American Meteorology Society Conference on Mountain Meteorology, Session9A.2, United States of America, pp. 11-15, Available: , [Consulted: August 22, 2021] .
Campbell, S.D. & Olson, S. 1987. “Recognizing low-altitude wind shear hazards from Doppler weather radar: an artificial intelligence approach”. Journal of Atmospheric and Oceanic Technology, 4(1): 5-18, ISSN: 0739-0572, DOI: 10.1175/1520-0426(1987)004<0005:RLAWSH>2.0.CO;2.
Carvalho, D.; Rocha, A.; Gómez-Gesteira, M. & Santos, C. 2012. “A sensitivity study of the WRF model in wind simulation for an area high wind energy”. Environmental Modelling & Software, 33: 23-34, ISSN: 1364-8152, DOI: 10.1016/j.envsoft.2012.01.2019.
Chan, P.W. & Lee, Y.F. 2011. “Application of a groundbased, multi-channel microwave radiometer to the alerting of low-level windshear at an airport”. Meteorologische Zeitschrift, 20(4): 423-429, ISSN: 0941-2948, DOI: 10.1127/0941-2948/2011/0275.
Chan, P.W. & Lee, Y.F. 2012. “Application of short-range LIDAR in wind shear alerting”. Journal of Atmospheric and Oceanic Technology, 29(2): 207-220, ISSN: 0739-0572, DOI: 10.1175/JTECH-D-11-00086.
Chan, P.W. & Hon, K.-K. 2016. “Performance of super high resolution numerical weather prediction model in forecasting terrain-disrupted airflow at the Hong Kong International Airport: Case studies”. Meteorological Applications, 23(1): 101-114, ISSN: 1469-8080, DOI: 10.1002/met.1534.
Coll-Hidalgo, P.; Pérez-Alarcón, A. & González-Jardines, P.M. 2021. “Evaluation of Microphysics Schemes in WRF-ARW Model for Numerical Wind Forecast in José Martí Airport”. In: Proceedings of The 3rd International Electronic Conference on Atmospheric Sciences. [Consulted: July 15, 2021]
Creighton, G.; Kuchera, E.; Adams-Selin, R.; McCormick, J.; Rentschler, S. & Wickard, B. 2014. “AFWA diagnostics in WRF”. . [Consulted: February 12, 2020]
Díaz-Zurita, A.; Góngora-González, C.M.; Lobaina-LaO, A.; Pérez-Alarcón, A. & Coll-Hidalgo, P. 2021. “Numerical mesoscale and short-term wind forecast for the “José Martí” International Airport of Havana”. Revista Brasileira de Meteorologia, 36(2),171-182, ISSN: 1982-4351, DOI:10.1590/0102-77863610007.
Dudhia, J. 1989. “Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model”. Journal of Atmospheric Sciences, 46(20): 3077–3107, ISSN: 0022-4928, DOI:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
García-Diez, M.; Fernández, J.; Fitaand, L. & Yague, C. 2013. “Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe”. Quarterly Journal of the Royal Meteorological Society, 139(671): 501-514, ISSN:1477-870X, DOI:10.1002/qj.1976.
Grell, G.A. & Freitas, S.R. 2013. “A scale and aerosol aware stochastic convective parameterization for weather and air quality modelling”. Atmospheric Chemestry and Physics Discussion, 13(23): -23845–23893, ISSN: 1680-7316, DOI:10.5194/acp-14-5233-2014.
Han, J.Y.; Baik, J.J. & Khain, A.P. 2012. “A numerical study of urban aerosol impacts on clouds and precipitation”. Journal of Atmospheric Sciences, 69(2): 504-520, ISSN: 0022-4928, DOI:10.1007/s13143-014-0016-7.
Halder, M.; Hazra, A.; Mukhopadhyay, P. & Siingh, D. 2015. “Effect of the better representation of the cloud ice-nucleation in WRF microphysics schemes: A case study of a severe storm in India”. Atmospheric Research, 154: 155-174, ISSN: 0169-8095, DOI:10.5194/angeo-30-897-2012.
Hermes, L.G.; Witt, A. & Smith, S.D. 1993. “The gust-front detection and wind-shift algorithms for the terminal Doppler weather radar system”. Journal of Atmospheric and Oceanic Technology, 10, 693-709, ISSN: 0739-0572, DOI: 10.1175/1520-0426(1993)010<0693:TGFDAW>2.0.CO;2.
Hon, K.-K. 2018. “Simulated satellite imagery at sub-kilometre resolution by the Hong Kong observatory”. Weather, 73: 139-144, ISSN: 431656, DOI:10.1002/met.1534.
Hon, K.-K. 2020. “Predicting Low-Level Wind Shear Using 200-m-Resolution NWP at the Hong Kong International Airport”. Journal of Applied Meteorology and Climatology, 59: 193-207, ISSN: 1558-8424, DOI:10.1175/JAMC-D-19-0186.1.
Hong, S.-Y.; Dudhia, J. & Chen, S.-H. 2004. “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation”. Monthly Weather Review, 132: 103–120 ISSN: 1520-0493, DOI: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
Hong, S.-Y & Lim, J.-O.J. 2006. “The WRF single–moment 6–class microphysics scheme (WSM6)”. Journal of the Korean Meteorological Society, 42: 129–151, ISSN: 1598-3560, DOI:10.1155/2010/707253.
Hu, X.-M; Nielsen-Gammon, J.W. & Zhang, F. 2012. “Evaluation of three planetary boundary layer schemes in the WRF model”. Journal of Applied Meteorology and Climatology, 49(9): 1831-1844, ISSN: 1558-8424, DOI: 10.1175/2010JAMC2432.1.
Hu, X.-M.; Klein, P.M. & Xue, M. 2013. “Evaluation of the update YSU planetary boundary layer scheme with in WRF for wind resource and air quality assessments”. Journal of Geophysical Research: Atmospheres, 118(8): 10490-10505, ISSN: 0148-0227, DOI:10.1002/jgrd.50823.
Iribarne, J.V. & Godson, W.L. 1981. “Atmospheric Thermodynamics”. In Geophysics and Astrophysics Monographs, 2nd ed.; B.M. McCormac, Ed.; Kluwer Academic Publishers: Boston, MA, USA; pp. 259.
Janjić, Z.I. 2001. “Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model”. NCEP Office Note 437.
Lihui, J.; Baiquan, T.; Xinglong, X. ; Zibo, Z. & Bin, Y. 2012. “Numerical simulations of low attitude wind shear based on Doppler lidar. Infrared Laser”. Infrared and Laser Engineering, 41(7): 1761-1766, ISSN: 1007-2276.
Jolliffe, I. & Stephenson, D. 2003. “Forest Verification: a practitioner’s guide in atmospheric science”. In: John Wiley Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, pp. 37–97.
Lin, Y.-L.; Farley, R.D. & Orville, H.D. 1983. “Bulk parameterization of the snow field in a cloud model”. Journal of Applied Meteorology and Climatology, 22(6): 1065–1092, ISSN: 1558-8424, DOI:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Liu, C. & Moncrieff, M.W. 2007. “Sensitivity of Cloud-Resolving Simulations of Warm-Season Convection to Cloud Microphysics Parameterizations”. Monthly Weather Review, 135(8): 2854-2868, ISSN: 1520-0493, DOI:10.1175/MWR3437.1.
Liu, C.; Ikeda, K.; Thompson, G.; Rasmussen, R. & Dudhia, J. 2011. “High-Resolution Simulations of Wintertime Precipitation in the Colorado Headwaters Region: Sensitivity to Physics Parameterizations”. Monthly Weather Review, 139(11): 3533-53, ISSN: 1520-0493, DOI:10.1175/MWR-D-11-00009.1
Miao, J.F.; Wyser, K.; Chen, D. & Ritchie, H. 2009. “Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics”. Annales Geophysicae, 27(6): 2303-2320, ISSN: 1432-0576, DOI:10.5194/angeo-27-2303-2009.
Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J. & Clough, S.A. 1997. “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave”. Journal of Geophysical Research: Atmospheres, 102(D14): 16663–16682, ISSN: 0148-0227, DOI:10.1029/97JD00237.
Montero, G.; Montenegro, R.; Escobar, J.; Rodríguez, E. & González, J. 2006. “Modelización y simulación numérica de campos de vientos orientados a procesos de contaminación atmosférica”. Instituto Universitario de Sistemas Inteligentes y Aplicaciones numéricas en Ingeniería, Universidad de Las Palmas, Gran Canaria [Consulted: August 21, 2021]
Morrison, H.; Thompson, G. & Tatarskii, V. 2009. “Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one– and two–moment schemes”. Monthly Weather Review, 137(3): 991–1007, ISSN: 1520-0493, DOI: 10.1175/2008MWR2556.1.
OACI. 2005. “Manual on Low-Level Wind Shear”. Doc 9817 AN/449, pp. 1-8 [Consulted: March 10, 2021]
Otkin, J.A. & Greenwald. T.J. 2008. “Comparison of WRF Model-Simulated and MODIS-Derived Cloud Data”. Monthly Weather Review, 136(6): 1957-70, ISSN: 1520-0493, DOI: 10.1175/2007MWR2293.1.
Pérez-Bello, A.; Mitrani, A.I.; Díaz, R.O.; Wettre, C. & Robert, L. H. 2019. “A numerical prediction system combining ocean, waves and atmosphere models in the Inter-American Seas and Cuba”. Revista Cubana de Meteorología, 25(1): 109–120, ISSN: 2664-0880 [Consulted: January 15, 2021]
Rajeevan, M.; Kesarkar, A.; Thampi, S.; Rao, T.; Radhakrishna, B. & Rajasekhar, M. 2010. “Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over southeast India”. Annales Geophysicae, 28(2): 603–619, ISSN: 1432-0576, DOI: 10.5194/angeo-28-603-2010.
Reisner, J.; Rasmussen, R.M. & Bruintjes, R.T. 1998. “Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model”. Quarterly Journal of the Royal Meteorological Society, 124(548): 1071-107, ISSN: 1477-870X, DOI:10.1002/qj.49712454804
Sánchez, E.O. 2018. Evaluation of the medium-term forecast of the atmospheric component of the SPNOA with data from INSMET meteorological stations. Bachelor Thesis, Higher Institute of Technologies and Applied Sciences, Havana, Cuba, 2018.
Sari, F.P.; Baskoro, A.P. & Hakim, O.S. 2018. “Effect of different microphysics scheme on WRF model: A simulation of hail event study case in Surabaya, Indonesia”. In: Proceedings of the American Institute of Physics Conference, 1987(1), 020002, DOI:10.1063/1.5047287.
Shaw, B.; Spencer, P.; Carpenter, J. & Barrere, J. 2008. “Implementation of the WRF model for the Dubai International Airport aviation weather decision support system”. In: Proceedings of the 13th Conference on Aviation, Range and Aerospace Meteorology, New Orleans, United States of America, 5.2. [Consulted: January 10, 2021]
Shrestha, R.K.; Connolly, P.J. & Gallagher, M.W. 2017. “Sensitivity of WRF Cloud Microphysics to Simulations of a Convective Storm Over the Nepal Himalayas”. The Open Atmospheric Science Journal, 11(1): 29-43, ISSN: 1874-2823, DOI: 10.2174/1874282301711010029.
Shun, C. M. & Chan, P. W. 2008. “Applications of an infrared Doppler LIDAR in detection of wind shear”. Journal of Atmospheric and Oceanic Technology, 25(5), 637-655, ISSN: 0739-0572, DOI: 10.1175/2007JTECHA1057.1.
Sierra, L.M.; Ferrer, H.A.L.; Valdés, R.; Mayor, Y.; Cruz, R.; Montejo, I.; Rodríguez, C.F.; Rodríguez, N.; Roque, A. 2015. “Automatic mesoscale prediction system of four daily cycles”. Technical Scientific Report. DOI: 10.13140/RG.2.1.2888.1127
Sierra, M.; Borrajero, L.; Ferrer, A.L.; Morfa, Y.; Yordanis, A.; Loyola, M. & Hinojosa, M. 2017. “Sensitivity studies of the SisPI to changes in the PBL, the number of vertical levels and the microphysics and clusters parameterizations, at very high resolution”. Technical Scientific Report. DOI: 10.13140/RG.2.2.29136.00005.
Skamarock, W.C.; Klemp, J.B.; Dudhia. J.; Gill, D.O.; Barker, D.M.; Wang, W. & Power, J.G. 2005. “A description of the advanced research WRF version 2”. NCAR Tech Note NCAR/TN 468 STR, National Center for Atmosferic Research, Boulder, Colo.
Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W. & Power, J.G. 2008. “Description of the Advanced Research WRF Version 3”. NCAR Tech Note NCAR/TN 475 STR, UCAR Communications, Boulder, Colo.
Somos-Valenzuela, M. & Manquehual-Cheuque, F. 2020. “Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (NPI) and Baker River Basin”. Atmósfera, 11(815), 19, ISSN: 0187-6236, DOI:10.3390/atmos11080815.
Sosa, A. 2018. “International Airport “José Martí” low-level wind shear characteristics during 2012-2017 period”. Bachelor Thesis, Higher Institute of Technologies and Applied Sciences, Havana, Cuba.
Srikanth, M.; Satyanarayana, A.N.V. & Rao, T.N. 2014. “Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility. -Case study”. Atmospheric Research, 139: 1-17, ISSN: 0169-8095, DOI: 10.1016/j.atmosres.2013.12.017.
Srinivas, C.V.; Venkatesan, R. & Bagavath Singh, A. 2007. “Sensitivity of mesoscale simulations of land-sea breeze to boundary layer turbulence parameterization”. Atmospheric Environment, 41(12): 2534-2548, ISSN: 1352-2310, DOI: 10.1016/j.atmosenv.2006.11.027.
Storm, B. & Basu, S. 2010. “The WRF Model Forecast-Derived low-level wind shear climatology over the United States Great Plains”. Energies, 3, 258-276, ISSN: 1996-1073, DOI: 10.3390/en3020258.
Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Weigel, J. & Cuenca, R.H. 2004. “Implementation and verification of the unified NOAH land surface model in the WRF model”. In: Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA; 17.5, pp. 11-15.
Urlea, A.-D. & Pietrisi, M. 2015. “Study of the Low Level Wind Shear using AMDAR reports”. EGU General Assembly Conference Abstracts, pp. 2185, [Consulted: August 21, 2021]
Wilson, W.; Roberts, R.D.; Kessinger, C. & McCarthy, J. 1984. “Microburst wind structure and evaluation of Doppler radar for airport wind shear detection”. Journal of Applied Meteorology and Climatology, 23(6), 898-915, ISSN: 1558-8424, DOI: 10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2.