Relación de la temperatura superficial del mar y los modos de variabilidad climática con la actividad ciclónica del Atlántico Norte

Contenido principal del artículo

Albenis Pérez-Alarcón
José C. Fernández-Alvarez
Rogert Sorí
Raquel Nieto
Luis Gimeno

Resumen

En este estudio se realizó un análisis climatológico de la actividad ciclónica en la cuenca del Atlántico Norte (NATL) con el objetivo de mejorar nuestra comprensión de cómo la actividad de los CTs es modulada por la temperatura superficial del mar (TSM) y la variabilidad climática,. La información sobre los CTs se extrajo de la base de datos IBTrACS, mientras que la TSM se obtuvo la base de datos Centennial Time Scale. El análisis de la TSM revela una tendencia al calentamiento (~0.23 °C/década) del NATL tropical durante la temporada ciclónica entre 1980 y 2019, mientras que la actividad ciclónica muestra un aumento de 1.4 CTs/década en la frecuencia de tormentas tropicals; sin embargo, el incremento observado en la frecuencia de los huracanes no es significativo. La creciente frecuencia de CTs después de 2000 con respecto al período 1980-1999 puede ser el resultado del aumento de las condiciones favorables para el desarrollo ciclónico, como las anomalías positivas de la TSM. Además, las regiones orientales de la cuenca NATL exhiben un aumento en la densidad de la trayectoria de las tormentas, lo que explica la disminución en la densidad de la trayectoria cerca del Arco de las Antillas Menores. Finalmente, el modo meridional del Atlántico, la oscilación multidecadal del Atlántico y El Niño-Oscilación Sur  tienen una influencia significativa en la actividad de los CTs; sin embargo, no pueden explicar completamente la tendencia al aumento de la frecuencia de CTs   observada en las últimas décadas.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Pérez-AlarcónA., Fernández-AlvarezJ. C., SoríR., NietoR., & GimenoL. (2021). Relación de la temperatura superficial del mar y los modos de variabilidad climática con la actividad ciclónica del Atlántico Norte. Revista Cubana De Meteorología, 27(3). Recuperado a partir de http://rcm.insmet.cu/index.php/rcm/article/view/575
Sección
Artículos Originales

Citas

Aiyyer, A. & Thorncroft, C. 2006. “Climatology of vertical shear over the tropical Atlantic”. Journal of Climate, 19: 2969–2983, ISSN: 0894-8755, DOI: 10.1175/JCLI3685.1.
Andrews, D. G.; Holton, J. R. & Leovy, C. B. 1987. Middle Atmosphere Dynamics. 1st ed., vol. 40, United Kingdom: Academic Press, 489p., ISBN: 9780080511672, Available: , [Consulted: Febraury 10, 2021].
Arora, K. & Dash, P. 2016. “Towards Dependence of Tropical Cyclone Intensity on Sea Surface Temperature and Its Response in a Warming World”. Climate, 4(2): 30, ISSN: 2225-1154, DOI: 10.3390/cli4020030.
Bhatia, K. T.; Vecchi, G. A.; Knutson, T. R.; Murakami, H.; Kossin, J.; Dixon, K. W. & Whitlock, C. E. 2019. “Recent increases in tropical cyclone intensification rates”. Nature Communication, 10: 635, ISSN 2041-1723, DOI: 10.1038/s41467-019-08471-z.
Bister, M. & Emanuel, K. A. 2002. “Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability”. Journal Geophysical Research Atmosphere, 107(D24): 4801, ISSN:2169-8996, DOI: 10.1029/2001JD000776.
Camargo, S. J.; Emanuel, K. A. & Sobel, A. H. 2007. “Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis”. Journal of Climate, 20: 4819–4834, ISSN: 0894-8755, DOI: 10.1175/JCLI4282.1.
Caron, L.; Boudreault, M. & Bruyère, C. L. 2015. “Changes in large-scale controls of Atlantic tropical cyclone activity with the phases of the Atlantic multidecadal oscillation”. Climate Dynamics, 44: 1801–1821, ISSN: 1432-0894, DOI: 10.1007/s00382-014-2186-5.
Chang, E. K. M. & Guo, Y. 2007. “Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations?”. Geophysical Research Letter, 34: L14801, ISSN: 1944-8007, DOI: 10.1029/2007GL030169.
Chiang, J. C. H. & Vimont, D. J. 2004. “Analagous meridional modes of atmosphere-ocean variability in the tropical Pacific and tropical Atlantic”. Journal of Climate, 17(21): 4143-4158, ISSN: 0894-8755, DOI: 10.1175/JCLI4953.1.
Cione, J. J. & Uhlhorn, E.W. 2003. “Sea Surface Temperature Variability in Hurricanes: Implications with Respect to Intensity Change”. Monthly Weather Review, 131(8): 1783-1796, ISSN: 1520-0493, DOI: 10.1175//2562.1.
Dare, R. A. & McBride, J. L. 2011. “The threshold sea surface temperature condition for tropical cyclogenesis”. Journal of Climate, 24: 4570–4576, ISSN: 0894-8755, DOI: 10.1175/JCLI-D-10-05006.1.
DeMaria, M.; Knaff, J. A. & Connell, B. H. 2001. “A Tropical Cyclone Genesis Parameter for the Tropical Atlantic”. Weather and Forecasting, 16: 219–233, ISSN: 1520-0434, DOI: 10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2
Deser, C.; Alexander, M. A.; Xie, S.-P. & Phillips, A. S. 2010. “Sea surface temperature variability: Patterns and mechanisms”. Annual Review of Marine Science, 2: 115–143, ISSN: 1941-0611, DOI:10.1146/annurev-marine-120408-151453.
Elsner, J. B. 2003. “Tracking hurricanes”. Bulletin of the American Meteorological Society, 84: 353–356, ISSN: 1520-0477, DOI: 10.1175/BAMS-84-3-353.
Emanuel, K. A. 2007. “Environmental factors affecting tropical cyclone power dissipation”. Journal of Climate, 20: 5497–5509, ISSN: 0894-8755, DOI: 10.1175/2007JCLI1571.1
Emanuel, K. A. 2013. “Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century”. Proceedings of the National Academy of Sciences, 110: 12219–12224, ISSN: 1091-6490, DOI: 10.1073/pnas.1301293110.
Enfield, D. B.; Mestas-Nunez, A. M. & Trimble, P. J. 2001. “The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S”. Geophysical Research Letter,28: 2077-2080, ISSN: 1944-8007, DOI: 10.1029/2000GL012745
Enfield, D. B.; Mestas, A.M.; Mayer, D. A. & Cid-Serrano, L. 1999. “How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures?”. Journal of Geophysical Research Ocean, 104: 7841-7848, ISSN: 2169-9291, DOI: 10.1029/1998JC900109.
Fraza, E. & Elsner, J. B. 2015. “A climatological study of the effect of sea-surface temperature on North Atlantic hurricane intensification”. Physical Geography, 36(5): 395-407, ISSN: 1930-0557, DOI: 10.1080/02723646.2015.1066146.
Goldenberg, S. B.; Landsea, C. W.; Mestas-Nuñez, A. M. & Gray, W. M. 2001. “The Recent Increase in Atlantic Hurricane Activity: Causes and Implications”. Science, 293: 474-479, ISSN: 1095-9203, DOI: 10.1126/science.1060040.
Gray, W. M. 1968. “Global view of the origin of tropical disturbances and storms”. Monthly Weather Review, 96(10): 669–700, ISSN: 1520-0493, DOI: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.
Gray, W. M. 1984. “Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences”. Monthly Weather Review, 112(9): 1649-1668, ISSN: 1520-0493, DOI: 10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.
Hakkinen, S. & Rhines, P. B. 2004. “Decline of subpolar North Atlantic gyre circulation during the 1990s”. Science, 304: 555–559, ISSN: 1095-9203, DOI: 10.1126/science.1094917.
Hakkinen, S. & Rhines, P. B. 2009. “Shifting surface currents in the northern North Atlantic Ocean”. Journal Geophysical Research, 114: C04005, ISSN: 2169-9291, DOI: 10.1029/2008JC004883.
Held, I. M. & Soden, B. J. 2006. “Robust responses of the hydrological cycle to global warming”. Journal of Climate, 19: 5686–5699, ISSN: 0894-8755, DOI: 10.1175/JCLI3990.1.
Hirahara, S.; Ishii, M. & Fukuda, Y. 2014 “Centennial-scale sea surface temperature analysis and its uncertainty”. Journal of Climate, 27: 57-75, ISSN: 0894-8755, DOI: 10.1175/JCLI-D-12-00837.1.
Hurrell, J. W. 1995. “Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation”. Science, 269: 676-679, ISSN: 1095-9203.
Jiang, H.; Halverson, J. B. & Zipser, E. J. 2008. “Influence of environmental moisture on TRMM-derived tropical cyclone precipitation over land and ocean”. Geophysical Research Letter, 35: L17806, ISSN: 1944-8007, DOI: 10.1029/2008GL034658.
Jones, P. D.; Jónsson, T. & Wheeler, D. 1997. “Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland”. International Journal of Climatology, 17: 1433-1450, ISSN: 1097-0088, DOI: 10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.
Keith, E. & Xie, L. 2009. “Predicting Atlantic Tropical Cyclone Seasonal Activity in April”. Weather and Forecasting, 24: 436–455, ISSN: 1520-0434, DOI: 10.1175/2008WAF2222139.1.
Killick, R.; Fearnhead, P. & Eckley, I. A. 2012. “Optimal detection of change points with a linear computational cost”. Journal of the American Statistical Association, 107(500): 1590–1598, ISSN: 1537-274X, DOI: 10.1080/01621459.2012.737745.
Klotzbach, P. J. 2010. “On the Madden–Julian oscillation–Atlantic hurricane relationship”. Journal Climate, 23: 282–293, ISSN: 0894-8755, DOI: 10.1175/2009JCLI2978.1.
Klotzbach, P. J. & Gray, V. M. 2008. “Multidecadal variability in North Atlantic tropical cyclone activity”. Journal of Climate, 21: 3929–3935, ISSN: 0894-8755, DOI: 10.1175/2008JCLI2162.1.

Knaff, J. A. 1998. “Predicting summertime Caribbean pressure in early April”. Weather and Forecasting, 13: 740–752, ISSN: 1520-0434, DOI: 10.1175/1520-0434(1998)013<0740:PSCPIE>2.0.CO;2.
Knapp, K. R.; Kruk, M. C.; Levinson, D. H.; Diamond, H. J. & Neumann, C. J. 2010. “The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data”. Bulletin of the American Meteorological Society, 91: 363-376, ISSN: 1520-0477, DOI:10.1175/2009BAMS2755.1.
Kossin, J. P.; Camargo, S. J. & Sitkowski, M. 2010. “Climate modulation of North Atlantic hurricane tracks”. Journal of Climate, 23: 3057–3076, ISSN: 0894-8755, DOI: 10.1175/2010JCLI3497.1.
Kossin, J. P.; Olander, T. L. & Knapp, K. R. 2013. “Trend Analysis with a New Global Record of Tropical Cyclone Intensity”. Journal of Climate, 26; 9960–9976, ISSN: 0894-8755, DOI: 10.1175/JCLI-D-13-00262.1.
Kossin, J.; Emanuel, K. & Vecchi, G. 2014. “The poleward migration of the location of tropical cyclone maximum intensity”. Nature, 509: 349–352, ISSN: 1476-4687, DOI: 10.1038/nature13278.
Knutson, T. R.; Sirutis, J. J.; Zhao, M.; Tuleya, R. E.; Bender, M.; Vecchi, G. A.; Villarini, G. & Chavas, D. 2015. “Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios”. Journal of Climate, 28(18): 7203-7224, ISSN: 0894-8755, DOI: 10.1175/jcli-d-15-0129.1.
Krishnamurthy, L.; Vecchi, G. A.; Msadek, R.; Murakami, H.; Wittenberg, A. & Zeng, F. 2016. “Impact of Strong ENSO on Regional Tropical Cyclone Activity in a High-Resolution Climate Model in the North Pacific and North Atlantic Oceans”. Journal of Climate, 29: 2375–2394, ISSN: 0894-8755, DOI: 10.1175/JCLI-D-15-0468.1.
Lim, Y.; Schubert, S. D.; Reale, O.; Molod, A. M.; Suarez, M. J. & Auer, B. M. 2016. “Large-Scale Controls on Atlantic Tropical Cyclone Activity on Seasonal Time Scales”. Journal of Climate, 29: 6727–6749, ISSN: 0894-8755, DOI: 10.1175/JCLI-D-16-0098.1.
Lim, Y. K.; Schubert, S. D.; Kovach, R.; Molod, A. M. & Pawson, S. 2018. “The Roles of Climate Change and Climate Variability in the 2017 Atlantic Hurricane Season”. Scientific Reports, 8: 16172, ISSN: 2045-2322, DOI: 10.1038/s41598-018-34343-5
Lin, I. ‐I.; Camargo, S. J.; Patricola, C. M.; Boucharel, J.; Chand, S.; Klotzbach, P.; Chan, J. C. L.; Wang, B.; Chang, P.; Li, T. & Jin, F. F. 2020. ENSO and Tropical Cyclones. In McPhaden, M. J.; Santoso, A. & Cai, W. (eds). El Niño Southern Oscillation in a Changing Climate. United States of America: American Geophysical Union (AGU), ISBN: 9781119548164, DOI: 10.1002/9781119548164.ch17.
Liu, M.; Vecchi, G. A.; Smith, J. A. & Knutson, T. R. 2019. “Causes of large projected increases in hurricane precipitation rates with global warming”. npj Climate and Atmospheric Science, 2(1): 1-5, ISSN: 23973722, DOI: 10.1038/s41612-019-0095-3.
Loader, C. R. 1999. “Bandwidth Selection: Classical or Plug-In?” The Annals of Statistics, 27(2): 415-438, ISSN: 00905364.
Mendelsohn, R.; Emanuel, K. A.; Chonabayashi, S. & Bakkensen, L. 2012. “The impact of climate change on global tropical cyclone damage”. Nature Climate Change, 2: 205–209, ISSN: 1758-6798, DOI: 10.1038/nclimate1357.
Molinari, J.; Knight, D.; Dickinson, M.; Vollaro, D. & Skubis, S. 1997. “Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis”. Monthly Weather Review, 125: 2699–2708, ISSN: 1520-0493, DOI: 10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.
Montgomery, M. T. 2016. Recent Advances in Tropical Cyclogenesis. In Mohanty U. C. & Gopalakrishnan S.G. (eds) Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Switzerland: Springer, ISBN: 978-94-024-0895-9, DOI: 10.5822/978-94-024-0896-6_22.
Murakami, H.; Li, T. & Hsu, P. 2014. “Contributing Factors to the Recent High Level of Accumulated Cyclone Energy (ACE) and Power Dissipation Index (PDI) in the North Atlantic”. Journal of Climate, 27: 3023–3034, ISSN: 0894-8755, DOI: 10.1175/JCLI-D-13-00394.1.
Naujokat, B. 1986. “An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics”. Journal of Atmospheric Science, 43: 1873-1877, ISSN: 1520-0469, DOI: 10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2
Neumann, C. J. 1993. Global climatology. Global Guide to Tropical Cyclone Forecasting, (ser. WMO/TD No. 560, Rep. TCP-31), Technical Document, Ginebra: World Meteorological Organization. Available: , [Consulted: Febraury 15, 2021].
Noy, I. 2016. “Tropical storms: the socioeconomics of cyclones”. Nature Climate Change, 6:343, ISSN: 1758-6798, DOI: 10.1038/nclimate2975.
Park, W. & Latif, M. 2005. “Ocean dynamics and the nature of air–sea interactions over the North Atlantic at decadal timescales”. Journal of Climate, 18: 982–95, ISSN: 0894-8755, DOI: 10.1175/JCLI-3307.1
Pazos, M. & Gimeno, L. 2017. “Identification of moisture sources in the Atlantic Ocean for cyclogenesis processes”. In: 1st International Electronic Conference on Hydrological Cycle (ChyCle-2017). Sciforum Electronic Conference Series, Vol. 1, Basel, Switzerland: MDPI, DOI: 10.3390/CHyCle-2017-04862
Penland, C. & Matrosova, L. 1998. “Prediction of tropical Atlantic sea surface temperatures using Linear Inverse Modeling”. Journal of Climate, 11(3): 483-496, ISSN: 0894-8755, DOI: 10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2
Pérez-Alarcón, A.; Sorí, R.; Fernández-Alvarez, J. C.; Nieto, R. & Gimeno, L. 2021. “Moisture Sources for Tropical Cyclones Genesis in the Coast of West Africa through a Lagrangian Approach”. Environmental Sciences Proceedings, 4:3, ISSN: 2673-4931, DOI: 10.3390/ecas2020-08126
Saffir, H. S. 1973. “Hurricane wind and storm surge”. Military Engineering, 65(423): 4–5, ISSN: 00263982.
Scott, A. J. & Knott, M. 1974. “A Cluster Analysis Method for Grouping Means in the Analysis of Variance”. Biometrics, 30(3): 507–512, ISSN: 0006341X.
Shen, W. X.; Tuleya, R. E. & Ginis, I. 2000. “A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming”. Journal of Climate, 13: 109–121, ISSN: 0894-8755, DOI: 10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2
Simpson, R. H. 1974. “The hurricane disaster-potential scale”. Weatherwise, 27: 169–186, ISSN: 1940-1310, DOI: 10.1080/00431672.1974.9931702
Smith, C. A. & Sardeshmukh, P. .2000. “The Effect of ENSO on the Intraseasonal Variance of Surface Temperature in Winter”. International Journal of Climatology, 20: 1543-1557, ISSN: 1097-0088, DOI: 10.1002/1097-0088(20001115)20:13<1543::AID-JOC579>3.0.CO;2-A.
Tang, B. H. & Neelin, J. D. 2004. “ENSO influence on Atlantic hurricanes via tropospheric warming”. Geophysical Research Letter, 31: L24204, ISSN: 1944-8007, DOI: 10.1029/2004GL021072.
Toggweiler, J. R. & Russell, J. 2008. “Ocean circulation in a warming climate”. Nature, 451: 286–288, ISSN: 1476-4687, DOI: 10.1038/nature06590.
Vecchi, G. A. & Knutson, T. R. 2008. “On Estimates of Historical North Atlantic Tropical Cyclone Activity”. Journal of Climate, 21(14): 3580-3600, ISSN: 0894-8755, DOI: 10.1175/2008JCLI2178.1.
Vecchi, G. & Soden, B. 2007. “Effect of remote sea surface temperature change on tropical cyclone potential intensity”. Nature, 450: 1066–1070, ISSN: 1476-4687, DOI: 10.1038/nature06423.
Vimont, J. P. & Kossin, J. P. 2007. “The Atlantic meridional mode and hurricane activity”. Geophysical Research Letter, 34: L07709, ISSN: 1944-8007, DOI: 10.1029/2007GL029683.
Wang, X.; Liu, H. & Foltz, G. R. 2017. “Persistent influence of tropical North Atlantic wintertime sea surface temperature on the subsequent Atlantic hurricane season”. Geophysical Research Letter, 44: 7927– 7935, ISSN: 1944-8007 , DOI: 10.1002/2017GL074801.
Wehner, M.; Prabhat; Reed, K. A.; Stone, D.; Collins, W. D. & Bacmeister, J. 2015. “Resolution Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group Idealized Configurations”. Journal of Climate, 28: 3905–3925, ISSN: 0894-8755, DOI: 10.1175/JCLI-D-14-00311.1.
Xie, L.; Yan, T.; Pietrafesa, L. J.; Morrison, J. M. & Karl, T. 2005. “Climatology and Interannual Variability of North Atlantic Hurricane Tracks”. Journal of Climate, 18: 5370–5381, ISSN: 0894-8755, DOI: 10.1175/JCLI3560.1.
Xu, J.; Wang, Y. & Tan, Z. 2016. “The Relationship between Sea Surface Temperature and Maximum Intensification Rate of Tropical Cyclones in the North Atlantic”. Journal of Atmospheric Sciences, 73: 4979–4988, ISSN: 1520-0469, DOI: 10.1175/JAS-D-16-0164.1.
Ye, M.; Wu, J.; Liu, W.; He, X. & Wang, C. 2020. “Dependence of tropical cyclone damage on maximum wind speed and socioeconomic factors”. Environmental Research Letters, 15(9): 094061, ISSN: 1748-9326, DOI: 10.1088/1748-9326/ab9be2.