Aplicaciones del modelo de diagnóstico meteorológico CALMET

Anel Hernández Garces, Ulises Jáuregui Haza, José A. González, Juan J. Casares, Lourdes Álvarez

Resumen

En este trabajo se analiza la aplicación del modelo de diagnóstico meteorológico CALMET. Se evalúan los acoplamientos aplicados, el tamaño de la región y su resolución, los periodos de simulación, los niveles en altura, la complejidad del entorno así como la versatilidad de las aplicaciones del modelo.

Palabras clave: modelo, diagnóstico meteorológico, CALMET

Palabras clave

modelo; diagnóstico meteorológico; CALMET

Texto completo:

PDF HTML EPUB

Referencias

Abdul-Wahab, S., Sappurd, A. & Al-Damkhi, A. 2011. Application of California Puff (CALPUFF) model: a case study for Oman. Clean Technologies and Environmental Policy, 13(1), 177-189.

Allwine, K. J. & Whiteman, C. D. 1985. MELSAR: a mesoscale air quality model for complex terrain. Volume 1. Overview, technical description and user's guide (No. PNL-5460-Vol. 1). Pacific Northwest Labs., Richland, WA (USA).

Anthes, R. A., Hsie, E. Y. & Kuo, Y. H. 1987. Description of the Penn State/NCAR mesoscale model version 4 (MM4) (p. 66). Boulder, CO.: NCAR.

Bellasio, R. & et al. 2005. Algorithms to account for topographic shading effects and surface temperature dependence on terrain elevation in diagnostic meteorological models. Boundary-layer Meteorology, 114(3), 595-614.

Blackadar, A. K. & Tennekes, H. 1968. Asymptotic similarity in neutral barotropic planetary boundary layers. Journal of the Atmospheric Sciences, 25(6), 1015-1020.

Briggs, G. A. 1985. Analytical parameterizations of diffusion: The convective boundary layer. Journal of Climate and Applied Meteorology, 24(11), 1167-1186.

Boise State University [BSU] 2010. Forecasting for Wind Energy Grid Integration. Final Report. Contract No. 00039902, pp. 97.

Carson, D. J. 1973. The development of a dry inversion-capped convectively unstable boundary layer. Quarterly Journal of the Royal Meteorological Society, 99(421), 450-467.

Chandrasekar, A. & et al. 2003. Evaluating the performance of a computationally efficient MM5/CALMET system for developing wind field inputs to air quality models. Atmospheric Environment 37(23), 3267-3276.

Collazo Aranda, A. E. 2011. Análisis de la contaminación transfronteriza y local de contaminantes gaseosos precursores de la depositación ácida húmeda y formación de ozono en Cuba. Tesis de Magíster en gestión y planificación ambiental. Universidad de Chile, pp. 110.

Contini, D. & et al. 2016. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM 10 concentrations. Science of The Total Environment, 560, 131-140.

Cui, H. & et al. 2011. A tracer experiment study to evaluate the CALPUFF real time application in a near-field complex terrain setting. Atmospheric Environment, 45(39), 7525-7532.

Curci, G. & et al. 2012. Modelling air quality impact of a biomass energy power plant in a mountain valley in Central Italy. Atmospheric Environment, 62, 248-255.

Dresser, A. L. & Huizer, R. D. 2011. CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited. Journal of the Air & Waste Management Association, 61(6), 647-659.

Enviromodeling LTDA 2005. Modelación de la calidad de aire en el área de influencia del complejo termoeléctrico San Isidro. Apéndice D. Proyecto de implementación del sistema de modelación CALMET/CALPUFF/CALGRID, en el valle de Quillota, pp. 13.

Fishwick, S. & Scorgie, Y. 2011. Performance of CALPUFF in predicting time-resolved particulate matter concentrations from a large scale surface mining operation. Proceedings of CASANZ Conference, 1-5.

Fonseca, M. 2013. Estudio del impacto en la calidad del aire de las fuentes puntuales en la ciudad de Pinar del Río. Revista Brasileira de Meteorologia, 28(1), 1-12.

Fonseca-Hernández, M. & et al. 2015 Análisis de sensibilidad del campo de viento producido por el modelo de diagnóstico CALMET. Ciencias de la Tierra y el Espacio, 16(2), 176-188.

Ghannam, K. & El-Fadel, M. 2013. Emissions characterization and regulatory compliance at an industrial complex: an integrated MM5/CALPUFF approach. Atmospheric Environment 69, 156-169.

Gualtieri, G. 2010. Implementing an operational ozone forecasting system based on WRF/CALMET/CALGRID models: a 5-month case study over Tuscany, Italy. Water, Air, & Soil Pollution, 209(1-4), 269-293.

Garratt, J. R. 1977. Review of drag coefficients over oceans and continents. Monthly Weather Review, 105(7), 915-929.

Godden, D. & Lurmann, F. 1983. Development of the PLMSTAR model and its application to ozone episode conditions in the South Coast Air Basin. Environmental Research and Technology, Inc., Westlake Village, CA.

Gonzalez, J. A. & et al. 2014a. Coupling WRF and CALMET models: evaluation during 15-day case study in a Caribbean bay, Cuba. Proceedings of the 16th International Conference on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes, Varna, Bulgaria, 57-61.

Gonzalez, J. A. & et al. 2014b. A comparison of different WRF-CALMET simulations against surface and PBL rawinsonde data. Proceedings of the 16th International Conference on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes, Varna, Bulgaria, 52-56.

González, J. A. & et al. 2015. Surface and upper-air WRF-CALMET simulations assessment over a coastal and complex terrain area. International Journal of Environment and Pollution. 57(3/4), 249 - 260.

Goodin, W. R., Mcrae, G. J. & Seinfeld, J. H. 1980. An objective analysis technique for constructing three-dimensional urban-scale wind fields. Journal of Applied Meteorology, 19(1), 98-108.

Gopalaswami, N. & et al. 2015. Analysis of meteorological parameters for dense gas dispersion using mesoscale models. Journal of Loss Prevention in the Process Industries, 35, 145-156.

Grell, G. A., Dudhia, J. & Stauffer, D. R. 1994. A description of the fifth-generation Penn State/NCAR mesoscale model (MM5).

Hanna, S. R., Weil, J. C. & Paine, R. J. 1986. Plume model development and evaluation-hybrid approach. EPRI Contract No. RP-1616-27, Electric Power Research Institute, Palo Alto, California.

Hernandez, A. & et al. 2014. Coupling WRF and CALMET models: Validation during primary pollutants glc episodes in an Atlantic coastal region, in Steyn D.G. et al (Eds.), Air Pollution Modeling and its Application XXII, Springer, Dordrecht, The Netherlands, 681-684.

Hernandez, A. & et al. 2016. Effect of the terrain features on the accuracy of CALMET. A complex terrain case study. Proceedings of the 17th International Conference on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes, Budapest, Hungary, 81-85.

Holnicki, P., Kaluszko, A., & Trapp, W. (2016). An urban scale application and validation of the CALPUFF model. Atmospheric Pollution Research, 7(3), 393-402.

Holtslag, A. A. M. & Van Ulden, A. P. 1983. A simple scheme for daytime estimates of the surface fluxes from routine weather data. Journal of Climate and Applied Meteorology, 22(4), 517-529.

Indumati, S. & et al. 2009. Dispersion of pollutants over land–water–land interface: Study using CALPUFF model. Atmospheric Environment, 43(2), 473-478.

Jackson, B. & et al. 2006. Comparison of ozone simulations using MM5 and CALMET/MM5 hybrid meteorological fields for the July/August 2000 CCOS episode. Atmospheric Environment, 40(16), 2812-2822.

Lee, R.F. & J.L. Thé, 2003. The Effect of CALMET Surface Layer Weighting Parameter R1 on the Accuracy of CALMET at Other Nearby Sites: a Case Study. Paper number 03-A-32 presented at Guideline on Air Quality Models: The Path Forward, October 22-24, 2003, Mystic, CT. Air and Waste Management Association, Pittsburgh, PA, pp. 8.

Levy, J. I. & et al. 2002. Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: model sensitivity and implications. Atmospheric Environment, 36(6), 1063-1075.

Liu, M. K. & Yocke, M. A. 1980. Siting of wind turbine generators in complex terrain. Journal of Energy, 4(1), 10-16.

Lonati, G., Cernuschi, S. & Sidi, S. 2010. Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port. Science of the Total Environment, 409(1), 192-200.

Lopez, M. T. & et al. 2005. Health impacts from power plant emissions in Mexico. Atmospheric Environment, 39(7), 1199-1209.

LUDWIG, F. L. & ENDLICH, R. M. 1988. User's guide for the winds on critical streamline surfaces (WOCSS) code. Final report, US Army Contract DAAL-03-D-86-0001/680, SRI International, Menlo Park, CA.

Macintosh, D. L. & et al. 2010. Use of CALPUFF for exposure assessment in a near-field, complex terrain setting. Atmospheric Environment, 44(2), 262-270.

Mahrt, L. 1982. ‘Momentum Balance of Gravity Flows’, Journal of Atmospheric Sciences 39, 2701–2711.

Maul, P. R. Atmospheric transport of sulfur compound pollutants. 1980, Nottingham, England: Central Eletricity Generating Bureau. Report MID/SSD/80/0026/R.

North Dakota Department of Health. Division of Air Quality [NDDH], 2003. CALPUFF analysis of current PSD Class I increment consumption in North Dakota and Eastern Montana using actual annual average SO2 emission rates. Technical report. Bismarck, North Dakota 58506, pp. 100.

Núñez, S. 2004. Altura de la capa de mezcla: caracterización experimental y aplicación de un modelo meteorológico para el estudio de su evolución diurna. Tesis Doctoral, Universidad Complutense de Madrid, Servicio de Publicaciones, pp. 237.

O'Brien, J. J. 1970. A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. Journal of the Atmospheric Sciences, 27(8), 1213-1215.

Petrov, O., & Lau, A. 2015. Impact Assessment of Biomass-based District Heating Systems in Densely Populated Communities. Part I: Dynamic Intake Fraction Methodology. Atmospheric Environment, 115, 70–78.

Pielke, R. 1974. A three-dimensional numerical model of the sea breeze over South Florida. Monthly Weather Review,102, 115–139.

Poplawski, K. & et al. 2011. Impact of cruise ship emissions in Victoria, BC, Canada. Atmospheric Environment, 45(4), 824-833.

Protonotariou, A. & et al. 2004. Validation and inter-comparison of CALPUFF regulatory model to Eulerian models and measurements. An application over the greater Athens area, Greece. Proceedings of the 9th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes,131-135.

Radonjic, Z., 2005. Coupling NMM Mesoscale Weather Forecasting Model with CALMET/CALPUFF Regulatory Air Dispersion Model. A&WMA 98th Annual Conference and Exhibition. Minneapolis, Minnesota, June, pp. 585.

Radonjic, Z. & et al. 2010. WRF-NMM Mesoscale Weather Forecast Model and CALMET Meteorological Preprocessor Wind Simulations over the Mountaneous Region. In EGU General Assembly Conference Abstracts, 12, 2941.

Radonjic, Z. & et al. 2011. Coupled NMM-CALMET Meteorology Development for the CALPUFF Air Dispersion Modelling in Complex Terrain and Shoreline Settings. Geophysical Research Abstracts Vol. 13, EGU2011-3729, 2011.

Ranzato, L. & et al. 2012. A comparison of methods for the assessment of odor impacts on air quality: Field inspection (VDI 3940) and the air dispersion model CALPUFF. Atmospheric Environment, 61, 570-579.

Rincón de Hoyos, M.E. 2012. Acoplamiento del modelo de mesoescala WRF al modelo de calidad del aire Calpuff. Tesis de Magister en Meteorología, Universidad Nacional de Colombia, pp. 111.

Roberts Bank Container Expansion Program [RB] 2005. Deltaport Third Berth Project. Appendix C. CALMET Meteorological Model, pp. 41.

Scire, J.S. & et al. 2000. A User’s Guide for the CALMET Meteorological Model (Version 5), Earth Tech, Concord, MA, pp. 332.

San Diego County. Air pollution control district [SDC] 2007. Eight-hour ozone attainment plan for San Diego County, pp. 245.

San José, R., & et al. 2016. Impacts on the Urban Air Quality and Health of Global Climate Scenarios Using Different Dynamical Downscaling Approaches. Journal of Geoscience and Environment Protection, 4, 168-174.

Senes Consultants Limited, 2009. Air Dispersion Modelling for Solid Waste Facilities in the Yukon.

Song, S. K. & et al. 2008. Dispersion and photochemical oxidation of reduced sulfur compounds in and around a large industrial complex in Korea. Atmospheric Environment, 42(18), 4269-4279.

Skamarock, W. C. & Klemp, J.B. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227(7), 3465-3485.

Schlager, C., Kirchengast, G. & Fuchsberger, J. 2016. Generation of high-resolution wind fields from the dense meteorological station network WegenerNet in South-Eastern Austria. In EGU General Assembly Conference Abstracts 18, 7891.

Shekarrizfard, M., Faghih-Imani, A., & Hatzopoulou, M. 2016. An examination of population exposure to traffic related air pollution: Comparing spatially and temporally resolved estimates against long-term average exposures at the home location. Environmental Research, 147, 435-444.

Souto, J. A. & et al. 2014. Simulation of plume dispersion using different stack configurations and meteorological inputs. International Journal of Environment and Pollution, 55(1), 139-147.

Taseko Mines Limited. 2008. Taseko Prosperity Gold-Copper Project. Appendix 4-2-D: CALPUFF and CALMET Methods and Assumptions, pp. 45.

Truhetz, H., Gobiet, A. & Kirchengast, G. 2007. Evaluation of a dynamic-diagnostic modelling approach to generate highly resolved wind fields in the Alpine region. Meteorologische Zeitschrift, 16(2), 191-201.

Valdenebro, V. & et al. 2013. Estimating hourly benzene concentrations in a highly-complex topographical environment in northern Spain using RAMS and the CALPUFF modeling system. EGU General Assembly Conference Abstracts, 15, 12318.

Van Ulden, A.P. & Holtslag, A.A.M. 1985. Estimation of atmospheric boundary layer parameters for diffusion applications. Journal of Climate and Applied Meteorology, 24(11), 1196-1207.

Villasenor, R. & et al. 2003. A mesoscale modeling study of wind blown dust on the Mexico City Basin. Atmospheric Environment, 37(18), 2451-2462.

Wang, W. & et al. 2008. An evaluation of a diagnostic wind model (CALMET). Journal of Applied Meteorology and Climatology, 47(6), 1739-1756.

Weil, J. C. 1985. Updating applied diffusion models. Journal of Climate and Applied Meteorology, 24(11), 1111-1130.

Whitford, J. 2009. Durham–York air quality assessment. Appendix D. CALPUFF methodology. Technical Study Report, Project No. 1009497.

Yim, S.H., Fung, J.C. & Lau, A.K. 2009. Mesoscale simulation of year-to-year variation of wind power potential over southern China. Energies, 2(2), 340-361.

Zhou, Y. & et al. 2003. Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing, China. Atmospheric Environment, 37(6), 815-826.

Enlaces refback

  • No hay ningún enlace refback.