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Cuba is immersed in the use of wind energy. However, for its development it has required various efforts in
different fields, including the improvement of tools that make the wind predictable and, in turn, wind generation, such is the
case of very short-term forecasts. For this reason, this paper compares the wind forecast of the Weather Research and
Forecasting model (WRF) at 3 km spatial resolution a Long Short-Term Memory (LSTM) model type. The comparison and
evaluation of the forecasts of the models is carried out with data from the Gibara I and II wind farms and the Los Cocos wind
survey mast, located in Holguín, Cuba, with wind speed measurements every 10 minutes at a height of 50 m. The LSTM
were built by first training the observations and then combining the observations with the WRF model forecast. The results of
the comparison were carried out for three study cases and indicate that both LSTM models present better results than the
WRF model, although the differences do not exceed 1 m/s. However, for the case studies, the WRF model behaves well
reproducing the daytime cycle, but with a MAE greater than 4 m/s.

wind nowcasting, renewable energy sources, LSTM models, WRF model.

Cuba se encuentra inmersa en el empleo de la energía eólica. Sin embargo, para su desarrollo ha requerido
diversos esfuerzos en diferentes campos, incluyendo el perfeccionamiento de herramientas que hagan predecible el viento y a
su vez la generación eólica, tal es el caso de los pronósticos a muy corto plazo. Por tal motivo, en el presente trabajo se
compara el pronóstico del viento producido por Weather Research and Forecasting Model (WRF) a 3 km de resolución
espacial y un modelo de inteligencia artificial del tipo Long Short Term Memory (LSTM). La comparación y evaluación de
los pronósticos de los modelos se realiza con datos de los parques eólicos Gibara I y II y la torre de prospección eólica Los
Cocos, ubicadas en la provincia de Holguín, Cuba. Allí se realizan mediciones de la velocidad del viento cada 10 minutos a
una altura de 50 m. El LSTM se construyó entrenando primero las observaciones y luego combinándolas con el pronóstico
del modelo WRF. Los resultados de la comparación se realizaron para tres casos de estudio e indican que ambos modelos
LSTM presentan mejores resultados que el modelo WRF, aunque las diferencias no superan 1 m/s. Sin embargo, para los
casos de estudio, el modelo WRF se comporta bien reproduciendo el ciclo diurno, pero con un MAE superior a 4 m/s.

predicción inmediata del viento, fuentes de energía renovable, modelos LSTM, modelo WRF.

 
INTRODUCTION

The demand for electricity has increased remar‐
kably worldwide with rapid economic, social and
industrial development. The need to mitigate the

impacts of climate change, the serious threat posed
by the depletion of non-renewable energy resources,
and rising fuel prices have driven growth in the use of
renewable energy sources.
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Over the past decade, wind power has been one of
the fastest growing energy sources in the world. Ac‐
cording to the Global Wind Energy Council (GWEC)
in April 2022, the wind industry enjoyed its second-
best year, with an increase of 93.6 GW of capacity
(72.5 GW on land (onshore) and 21.1 GW over the
sea (offshore), being, therefore, the total accumulated
capacity of 837 GW (GWEC, 2022). All this was pos‐
sible, even due to the complications caused by Covid
19.

Cuba, on the other hand, as part of the modifica‐
tion of its electricity generation matrix, has not been
left behind in the use of this source. By 2030, it is
intended to install more than 300 MW (Roque y Yu,
2014), with a coverage of 13 wind farms to deliver
this energy production, according to (Rosell, 2015),
(Pedraza, 2018). In fact, the generation of electricity
from wind energy represented 6% of the country's
total electricity in 2020. The total generation of the
Gibara I and II wind farms in 2022 was 215 GW/h
(Veloz, 2022), which is equivalent to 53,300 tons of
unconsumed fuel, so 161,081 tons of carbon dioxide
and other polluting gases were stopped from being
emitted.

Due to the intermittent nature of wind power, accu‐
rate wind speed forecasting becomes essential. The
use of prediction tools allows estimating the genera‐
tion of energy that will be injected into the network,
for planning and balancing in real time of the electri‐
cal system.

The national electrical energy system must be ready
to take over the generation of electrical energy from
conventional sources at times when it cannot be pro‐
duced from wind in order to make adequate and ef‐
fective use of the wind resource. Wind forecasts are
necessary for this in the locations where the wind
farms will be installed. The length of these forecasts
varies from a few minutes to two hours, which in the
literature is known as very short-term forecasts.

In the international sphere, among the methods
most used to make these forecasts are statistical met‐
hods ranging from classical variants to more advanced
variants based on artificial intelligence as exposed by
the works of (Carpinone et al., 2015), (Sapronova et
al., 2016). Some results have also been reported using
Numerical Weather Prediction (NWP) models, persis‐
tence method, nearest neighbor method as in the case
of (Appice et al., 2015), wavelet basis representation
and neural networks according to (Senkal y Ozgone‐
nel, 2013).

There have been many artificial intelligence met‐
hods used for wind forecasting in this type of applica‐
tions as exposed in the works (Senkal y Ozgonenel,
2013), (Schicker et al., 2017), (Mora et al., 2021),
(Bouche et al., 2022), (Li et al., 2022), highlighting
the Multilayer Perceptron and LSTM types. The suc‐
cess of the forecast methods mentioned, except for the

NWP, depends on the availability of stable and quality
observations.

It should also be noted that the ANEMOS project
(Giebel et al., 2011), has been one of the investiga‐
tions that has had great relevance, whose objective
was the development of advanced prediction models
that substantially improved the tools available to date.

Regarding the national scope, there are some stu‐
dies where the Weather Research and Forecast (WRF)
numerical model, statistical models, and neural net‐
works have also been used to produce short-term wind
speed forecasts, such is the case of the works by (Hi‐
nojosa, 2015), (Roque et al., 2015a), (Roque et al.,
2015b), (Martínez y Roque, 2019). Only (Martínez
y Roque, 2019) handled very short-term forecasting
and produced the projections using actual data. Parti‐
cularly in Cuba, a variety of circumstances, including
power outages, communication issues, storage issues,
and more, pose a threat to getting observations in real
time. A forecast system based only on these measu‐
rements would be equally unstable in light of their
inherent instability. The above issues motivated us to
launch this inquiry, which uses real data as well as the
WRF model's projection so that it can be used as an
alternative in the event of a measurement failure. In
a first approximation, the available the WRF model
outputs whose temporary frequency is every 1 hour
were used, so the data every 10 min were obtained
by interpolating, as in (Fuentes et al., 2022). Despite
this limitation, the results were encouraging, so in this
update, the experiments with the WRF model were
repeated, generating the outputs every 10 minutes for
the period February 1, 2019 to January 31, 2020, coin‐
ciding with the available observations. The previously
obtained LSTM models were recalibrated with the
new data and the comparison was made. As a result,
a better ability of the LSTM models is reaffirmed,
however the forecasts with the WRF model did not
have errors greater than 1 m/s and the diurnal cycle
was adequately represented. The document is organi‐
zed as follows, after the introduction the materials and
methods used are described, a description of the area
and the case studies, as well as the method of extra‐
polation of the wind speed at height are presented.
Next, the analysis of the results is presented, then the
conclusions, and the literature consulted.

MATERIALS AND METHODS

Study region

The study area is located in the Gibara municipality
(Figure 1), in the province of Holguín, where this
wind resource has been tested for its exploitation in
large scale electricity production. Said area was selec‐
ted as part of the national project: Improvement of the
Energy Forecast System for Wind and Photovoltaic
farms.
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Two wind farms are located in this territory, Gibara
I from the manufacturer GAMESA (now GAMESA-
Siemmens), has a power of 5.1 MW and Gibara II
from the manufacturer GOLDWIND, with a power of
4.5 MW; each of these have six wind turbines.

Close to the parks, the Los Cocos wind survey mast
is located 300 meters from the coastline and has a
height above sea level of 3 meters (Roque, 2015).

Data Used

One-year wind speed observations were gathered
from Los Cocos wind survey mast, for the creation of
very short-term wind forecasts. The duration was from
February 1 through January 31 of 2020. At this tower,
wind measurements were taken every 10 minutes at
heights of 10, 30, 50, and 100 m, these measurements
represent the mean value of the wind. Just the findings
from the measurements taken at a 50 m height are
displayed in this paper.

Sistema de Pronóstico Inmediato (SisPI)

The SisPI is a system that predicts the different me‐
teorological events in the short term, with a range of
24 hours. It is initialized with data from the Global Fo‐
recast System (GFS), and configured with the Weather
Research and Forecasting (WRF) atmospheric model.
It also has four daily updates every six hours (0000,
0600, 1200 and 1800 UTC), and three domains with
a resolution of 27, 9 and 3 km (Sierra et al., 2015),
(Sierra et al., 2017).

Precisely, the numerical forecasts were derived
from the Short-Range Prediction System (SisPI)'s 3km
resolution simulation domain (see Figure 2).

Unlike the previous work (Fuentes et al., 2022),
the SisPI outputs were taken every 10 minutes at a

height of 10 m to then extrapolate the wind at a
height of 50 m. The extrapolation was based on the
results obtained by (Roque et al., 2015a) in previous
investigations, where the well-known wind power law
equation (Emeis, 2013), expressed as follows in (1)
was used,

where α is the coefficient of vertical variation of
the wind or Hellmann's exponent, u r is the reference
wind speed at height z r, usually 10 m. The values of α
found by (Roque et al., 2015a), for the location of the
Los Cocos survey mast are shown in Table 1.

For both data sources, sets of 12 inputs every
10 min were generated to forecast 12 outputs also
every 10 min with a 2-h forecast horizon. With this set
of data, we proceeded to train the LSTM-type neural
network models.

Long Short-Term Memory (LSTM)

The basic configuration of the LSTM models is
shown in Figure 3. As input data for the training, only
the tower data were taken for the LSTM-1 model, and
for the LSTM-2 model, also was used the forecasts of
the WRF model as core of SisPI.

The prediction is obtained by supplying the input
data to a deep neural network. This network consists
of a first LSTM layer with 64 units, followed by
another with 32 units. The dropout technique is also
applied after each LSTM layer to control overfitting.
Finally, a final dense layer with simple unit and linear
activation provides a final probability.

To get a proper prediction, this network must be
trained. Training is an iterative learning process in
which data instances (a segment of inputs) for which
the correct output are known (whether or not there will
be a sharp increase in wind speed in the near future).
These are presented to the network one at a time, each

u z = ur zzr α
(1)

Figure 1. Location of the Gibara I and II wind farms
in the province of Holguín and the Los Cocos wind
survey mast. Note: Taken from (Roque et al., 2022).

 

 
Table 1. Values of the wind power law exponent for each type of stability in

the location of the Los Cocos survey mast. Note: Taken from (Roque et al., 2015a).

Unstable Neutral Stable
α 0.09 0.10 0.16

Figure 2. SisPI simulation domains. The study's 3km resolution
zone is represented by the green square. Note: (Source: self-made)
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time adjusting the weights associated with the input
values in each layer. The process is repeated multiple
times with different batches of input data until the
weights fit well enough to predict the correct label (or
probability) for any given input sample. To create the
training data instances, a time series is recorded for
each wind turbine over a long period of time. From
this data set segments of the appropriate size are ex‐
tracted. These segments can be tagged, as subsequent
entries can be checked for an increase. This set is used
to train the weights in the deep network. The set will
consist of positive (cases in which the prediction must
be positive, that is, there will be a high increase) and
negative (no increase should be predicted) instances.

In addition to the validation set, three case studies
(28 May 2019, 2 August 2019, and 18 November
2019) representing various wind regimes were left
out of the training for the evaluation. These case

studies correspond to different months of the year.
These days were chosen regardless of the types of
synoptic situation prevailing during the study period,
rather they were selected in terms of the mean value of
the wind, that is, a day with a favorable wind speed,
and others where the speed is not very eminent. The
first two cases correspond to the rainy season of the
year (Table 2), the synoptic situation that prevailed in
those days responds to the influence of the subtropical
anticyclone of the Atlantic, and it is precisely during
the rainy season where it reaches its highest frequency.
The last case belongs to the dry season, this day a qua‐
si-stationary front was found prevailing, this system
responds to the type of synoptic situation of Frontal
Systems (Soler et al., 2020), which usually have their
highest frequency precisely during the dry season of
the year.

Table 2, shows the selected days with a brief des‐
cription of the synoptic characteristics and Figure 4
presents the synoptic map for each case.

Metrics Uses

To carry out the analysis, several statisticians were
calculated, such as:

The mean absolute error (MAE), as shown in (2),
is defined as the absolute difference between the pre‐
dicted and observed values, with a range of values
between zero and infinity, with the optimal forecast
being when it reaches zero.

The root means square error (RMSE), as shown in
(3), is a measure of error that is defined as the root
mean square error (MSE).

The Pearson correlation coefficient (r), as shown in
(4), describes the linear strength of the relationship
between predicted and observed values. The value of
the coefficient r is between: -1≤ r ≤ 1. A value of r =
0 means that there is no linear correlation between the
variables studied.MAE = ∑i − 1n Oi − Fi 2n (2)RSME = 1n∑i − 1n Oi− Fi 2 (3)r = ∑i = 1n Oi − O Fi − F∑i = 1n Oi − O 2∑i = 1n Fi − F 2 (4)

Figure 3. Basic LSTM configuration. Note: (Source: self-made)
 

 
Table 2. Study cases and synoptic description. Note: (Source: self-made)

Day May 28, 2019 August 2, 2019 November 18, 2019

Synoptic
descrip‐

tion

It was characterized by the influence of
a "disturbed" extended oceanic anticyclo‐
nic flow (Figure 3a). The wind speed va‐
lues in the Los Cocos survey mast were
4.5 m/s on average at a level of 50 m abo‐
ve the surface with a maximum of 5.8 m/s
and an average minimum of 3.1 m/s. This
average behavior did not ensure a good

performance of the wind farms.

It was characterized by the influence of an
"undisturbed" extended oceanic anticyclonic
flow in the eastern half (Figure 3b). Another
day with wind energy conditions similar to the
previous one, but with another synoptic situa‐
tion. The wind speed values in the Los Cocos
survey mast were 3.6 m/s on average at a level
of 50 m above the surface, with a maximum of
4.8 m/s and an average minimum of 2.4 m/s.

It was characterized by the in‐
fluence of a quasi-stationary
front over Cuba (Figure 3c).
Day characterized by the lowest
mean values of wind speed
of those selected (3.6 m/s)
whose maximum values avera‐
ged 4.8 m/s and the minimum

2.4 m/s.
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Where Oi is the observed value and Fi is the fore‐
cast value at time i of the different models used.

RESULTS

Figure 5 exhibits, as a result be the behavior of
the mean absolute error that was acquired when fore‐
casting 12 periods separated every 10 minutes using
the data subset used for LSTM-1 and LSTM-2 model
training validation. The red line represents the results
with the data from Los Cocos survey mast (LSTM-1),
the blue line corresponds to the results of training
the LSTM with the SisPI forecast and the observation
tower (LSTM-2), the black line represents the forecast
produced by the WRF model.

As can be seen in said figure the MAE increased
for all three models as the prediction went away from
the initial terms, the LSTM-1 model has an oscillation
around 0.3 m/s and 0.7m/s, the LSTM-2 model, com‐
prises values close to 0.4 m/s and 0.5 m/s, quite good,
while the WRF model reaches higher values, between
0.9 m/s and 1 m/s approximately.

It can be seen that, on average, the errors of the
three models do not exceed 1 m/s, which is very fa‐
vorable. Note that the LSTM-type models had lower
errors in relation to the SisPI, which indicates good
performance on their part.

Another aspect that stands out, is how remarkable is
the ability of the LSTM-2 model to correct the WRF
forecast model. The combination of both data sources
results in a forecast very similar to that obtained with

the LSTM-1 model. In fact, the LSTM-2 model even
reaches lower MAE values than the LSTM-1 model.

As a form of verification, let's see the results obtai‐
ned for the selected case studies.

Verification of the Study Cases

The results obtained for the selected study cases are
summarized in Table 3 where the values of the evalua‐
tion metrics used are observed. Note that in the case
of LSTM-type models, there is consistency with the
results achieved with the validation set. Both neural
network models presented a MAE below 0.5 m/s for
all cases, the RMSE was close to zero with values

Figure 4. Configuration of the surface pressure field for: (a) May 28, 2019, (b) August
2, 2019 and (c) November 18, 2019. Note: Taken from the web site: www.esrl.noaa.gov/psd/.

 

Figure 5. Behavior of the MAE for the 12 forecast terms of
the validation set. The blue line refers to the results of training
the LSTM with the SisPI forecast and the tower observations

(LSTM-2), the black line represents the forecast produced by the
WRF model, and the red line shows the results acquired using data

from the Torre Los Cocos (LSTM-1). Note: (Source: self-made)
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not greater than 0.4 m/s, while the Pearson correlation
coefficient was 0.9 in the three days. These metric
values correspond to what is observed in Figure 5,
where the similarity between the LSTM-type forecasts
and the measurements in the tower is observed.

On the other hand, the results with the WRF model
indicate a deficiency of the model, since the lowest
MAE was 0.94 m/s for November 18, reaching its
highest value of 2.43 m/s for May 28, 2019. The
highest RMSE was also obtained for the same day
with 9.55 m/s, which indicates that in particular for
the prevailing synoptic situation, the model fails to
adequately represent the behavior of the wind.

As a preliminary conclusion, this first analysis sug‐
gests that in the absence of actual data, the WRF mo‐
del forecast can be used as an alternative.

Figure 6 shows the behavior of the diurnal wind
cycle, using the LSTM models and the WRF model
for the three cases analyzed. The red line indicates
the behavior of the observed wind. The black line
represents the WRF model, where It can be seen that
there is no correspondence, especially in the afternoon
hours. On the other hand, the blue line represents the
behavior of the LSTM-1 model trained only with the
observations; the green line to the LSTM-2 model,
which uses as input the observations and the forecast

given by the SisPI; As can be seen, both models have
a behavior very similar to that of the observations.

It should be noted that in the case of the WRF
model, the initial growth of the curves in the first
forecast hour is due to the well-known "spin up" of
the model, which indicates the heating phase of the
model, that is, it is the time simulation required for the
model to achieve physical equilibrium and, regardless
of the initial conditions imposed on it, produce its own
internal variability.

DISCUSSION

As seen in figure 5, despite the fact that the
LSTM-1 model has a fairly good MAE, which does
not exceed 0.8 m/s; the LSTM-2 model is the one
that showed the best results, with a MAE of just
under 0.6 m/s, which suggests that the WRF model
forecasts provide some dynamic and physical consis‐
tency that complements the observations. Therefore, a
variant could be to use the information from the mea‐
surements to apply a bias correction to the numerical
forecasts.

Regarding the verification of the cases studied for
the WRF model, it was possible to observe, as shown
in Table 2, that for November 18, the values of the

Table 3. Evaluation of the forecasts of the LSTM and WRF models in the case studies. (Source: self-made)

Metrics 28 May 2019 2 August 2019 18 November 2019 
Model LSTM-1 LSTM-2 WRF LSTM-1 LSTM-2 WRF LSTM-1 LSTM-2 WRF
MAE 0.49 0.45 2.43 0.25 0.36 1.6 0.15 0.28 0.94

Pearson correlation 0.99 0.99 -0.57 0.99 0.99 0.27 0.99 0.98 -0.01
RMSE 0.35 0.28 9.55 0.18 0.27 4.22 0.04 0.12 1.34

 

 

Figure 6. Forecast wind values for each of the case studies: 28 May 2019 (a), 2 August 2019 (b) and 18 November 2019 (c); using the
LSTM-1 (RNA wind, yellow line), the LSTM-2 model (RNA_wind+WRF), green line) and, the WRF forecast model (WRF, black line). The

red line represents the observed wind behavior. Note: (Source: self-made)
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metrics were relatively better compared to the rest
of the cases. During this day, the prevailing synoptic
situation was a quasi-stationary front, however, the
influence of this situation itself has low frequency for
our country.

Regarding August 22, the values of the statisticians
did not turn out to be so favorable. That day, the weat‐
her was under the presence of an undisturbed extended
oceanic anticyclonic flow, which responds to the in‐
fluence of the North Atlantic Subtropical Anticyclone.

However, May 28 was the day that produced the
highest results, and in turn, the most unfavorable. This
day the weather in Cuba was influenced by the presen‐
ce of an extended and disturbed oceanic anticyclonic
flow, a situation that, as on August 22, responds to the
presence of the Subtropical North Atlantic Anticyclo‐
ne, and as is known, this system is It is predominant
during almost the whole year and imposes the trade
winds that are preeminent throughout the country.
This could be related to the SisPI has deficiencies to
represent the correct position of the subtropical dorsal,
with a tendency to predict a drier tropospheric column
compared to the actual one, according to (Paula et
al., 2022), This study evaluated the ability of the
SisPI to represent the subtropical anticyclone of the
North Atlantic over the external domain during the
2020 rainy season).

Also, in the work of (Paula et al., 2022), it was
found that the SisPI shows tendencies to locate the
high geopotential zones further south of their actual
position, which produces changes in the forecast
synoptic flow. And that the errors of this present a
maximum in the month of May.

This may be the cause of the limitations of the WRF
model with the SisPI configuration to adequately fore‐
cast the wind.

As could be seen in figure 6, the LSTM models
represent the daytime cycle quite well, however the
WRF model does not correspond to it, where the mea‐
surements indicate a decrease in speed and the WRF
model predicts an increase in values. of the variable.
Hence, no correlation is found between what is predic‐
ted and what is observed. Despite the limitations of
the WRF model, if an LSTM model is used to correct
the errors, a very good forecast is achieved, so it is
recommended to use the combination of both data to
make the forecast.

CONCLUSIONS

From the results presented, we can arrive at the
following conclusions:

The LSTM models demonstrate a very strong abi‐
lity to anticipate wind force using both the data from
Los Cocos survey mast and the combination of the
same data with the SisPI forecasts.

Although the MAE and RMSE of the forecasts uti‐
lizing the SisPI data are slightly greater, they can be
corrected using an LSTM-type model.

Despite the appointed difficulties of SisPI configu‐
ration, in the absence of observations, it is possible to
use the SisPI data with bias correction as an alternati‐
ve for very short-term wind forecasting.
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